
i

FACULDADE GOVERNADOR OZANAM COELHO

BUSCA FONÉTICA EM BANCO DE DADOS

estudo da busca fonética para adaptação no mercado brasileiro

VINÍCIUS DE LUCENA BONOTO

UBÁ

MINAS GERAIS

2011

VINÍCIUS DE LUCENA BONOTO

BUSCA FONÉTICA EM BANCO DE DADOS:

estudo da busca fonética para adaptação em mercados brasileiros

Monografia apresentada como parte
das exigências para a obtenção do
título de Bacharel em Ciência da
Computação da FAGOC - Faculdade
Governador Ozanam Coelho,.

Orientador: Prof. Saulo Cunha Campos.

UBÁ

MINAS GERAIS

2011

ii

VINÍCIUS DE LUCENA BONOTO

BUSCA FONÉTICA EM BANCO DE DADOS:

estudo da busca fonética para adaptação em mercados brasileiros

Monografia apresentada e aprovada em .__ de dezembro de 2011.

Waldir Andrade Trevizano
(Examinador)

Marcelo Santos Daibert
(Examinador)

Saulo Cunha Campos
(Orientador)

Waldir Andrade Trevizano
(Coordenador de TCC)

iii

AGRADECIMENTOS

Durante todo o caminho percorrido para conclusão deste trabalho, passei por

momentos em que precisei de ajuda para alcançar meus objetivos. Neste momento

todas essas pessoas devem ser lembradas com imenso carinho e admiração que as

tenho.

Inicialmente, agradeço a Deus por me dar força e saúde para construção de

um caminho seguido de fé para o término deste trabalho, onde fui amparado a cada

dia em que realizei o projeto.

Agradeço a minha mãe Mariluce de Lucena Bonoto, que com muito empenho,

alegria, amor e dedicação sempre esteve comigo nos momentos felizes e difíceis

que passei durante este longo caminho. Minha mãe que também é pai, e que a cada

dia percebo o tanto que é especial para mim.

Agradeço ao meu pai Luíz Bonoto Filho, que esteve ao meu lado até meus 12

anos de idade, mas que hoje está presente em espírito para me trazer a alegria que

sempre foi presente em sua vida. Alegria no qual me inspirou a dedicar este trabalho

a ele.

Agradeço aos meus irmãos Carla de Lucena Bonoto Zanini e Rodrigo de

Lucena Bonoto, que foram companheiros nos momentos que mais precisei. Ao meu

cunhado Paulo Zanini, que com uma grande amizade, esteve sempre presente nos

momentos mais felizes da minha. Juntamente com o Lauro Teles, pessoa pela qual

sempre me passou belos exemplos.

Agradeço a minha namorada Jéssica Ciotti, pelo amor concedido durante este

processo e por ser compreensiva nos momentos em que mais precisei para alcançar

meus objetivos.

Agradeço aos professores e colegas de sala da FAGOC, em especial ao

Saulo Cunha Campos que além de professor tornou-se amigo e que todo

conhecimento repassado foi de grande valia para meu crescimento profissional, e ao

amigo de sala Jacinto Junior, que juntos conseguimos concluir nossos objetivos.

Por fim, agradeço aos meus colegas de trabalho da Tek-System Informática,

em especial ao José Ricardo Varella, Denis Pereira Raymundo, Antonio Gomes e

Diogo Sudré. Pessoas que foram compreensíveis e estiveram presentes nos

momentos que mais precisei durante esta caminhada.

iv

RESUMO

Observando a diversidade da Língua Portuguesa e a grande variedade de palavras
que podem ser lidas e escritas de formas diferentes devido ao som das letras nas
palavras, é comum aplicações de banco de dados conterem palavras escritas de
formas diferentes, embora foneticamente iguais. Apesar de já existirem estratégias
para solução do problema para a Língua Inglesa, empresas voltadas para o mercado
brasileiro não possuem soluções nativas eficientes nos diversos SGBD livres
disponíveis no mercado. Este trabalho tem o intuito de promover o estudo da busca
fonética, a implementação e o aperfeiçoamento de estratégias para a Língua
Portuguesa nos SGBD Firebird, MYSQL e Postgree. O uso desse recurso contribui
para uma crescente melhora em desempenho nas pesquisas realizadas e
diminuição nas redundâncias dos bancos de dados.

Palavras-chave : Busca Fonética, Soundex, Metaphone, Double-Metaphone, Banco
de Dados.

v

SUMÁRIO

LISTA DE FIGURAS ... vii

LISTA DE QUADROS .. viii

LISTA DE CÓDIGO-FONTE .. x

 LISTA DE SIGLAS ... xii

1 INTRODUÇÃO .. 1

1.1 O PROBLEMA E SUA IMPORTÂNCIA .. 3

1.2 OBJETIVO .. 5

1.2.1 Objetivo Geral ... 5

1.2.2 Objetivos específicos... 6

1.3 Organização do Trabalho ... 6

2 REFERENCIAL TEÓRICO .. 7

2.1 FONÉTICA DA LÍNGUA PORTUGUESA ... 7

2.2 BUSCA FONÉTICA .. 11

2.3 Soundex ... 112

2.4 Metaphone ... 15

2.5 Double Metaphone ... 17

2.6 NYSIIS.. 19

2.7 Comparativo Entre os Algoritmos de Busca Fonética .. 20

3 TRABALHOS RELACIONADOS 22

4 METODOLOGIA .. 24

5 ESTUDO DOS ALGORITMOS DE BUSCA FONÉTICA EXISTENTES EM SGBD

LIVRES .. 26

5.1 Busca Fonética em SGBD Livres ... 26

5.1.1 MySQL .. 26

5.1.2 POSTEGRESQL ... 27

5.1.3 Firebird .. 28

5.2 Aplicaçao dos Algoritmos de Busca Fonética já Existentes para Língua

Portuguesa ... 28

5.2.1 Soundex .. 28

5.2.2 Metaphone .. 29

vi

5.3 Soluçoes Alternativas para Busca Fonética no idioma Português em SGBD

Livres ... 30

5.3.1 SOLUÇAO 1 .. 31

5.3.2 SOLUÇÃO 2 .. 38

6 BUSCASONORA: PROPOSTA DE SOLUÇÃO PARA A BUSCA FONETICA NA

LÍNGUA PORTUGUESA .. 40

6.1 PRIMEIRA FASE – CORREÇÃO DE FALHAS DO ALGORITMO 42

6.2 SEGUNDA FASE – TRATAMENTO PARA LETRAS S, X E Z 47

6.3 TERCEIRA FASE – DESENVOLVIMENTO DA INTERFACE 58

7 ESTUDO DE CASO .. 60

8 CONSIDERAÇÕES FINAIS .. 63

REFERÊNCIAS BIBLIOGRÁFICAS ... 64

APÊNDICE A: PREPARAÇÃO DO AMBIENTE PARA REALIZAÇÃO DA BUSCA
FONÉTICA NO BANCO DE DADOS FIREBIRD .. 67

APÊNDICE B: INSTALAÇÃO DO FIREBIRD ... 68

APÊNDICE C: CÓDIGO FONTE ORIGINAL PUBLICADO NA REVISTA CLUBE
DELPHI EM 2006 ... 72

APÊNDICE D: PROCEDIMENTO (PROCEDURE) CRIADO NO FIREBIRD PARA
BUSCA FONÉTICA .. 76

APÊNDICE E: PROCEDIMENTO (PROCEDURE) CRIADO NO FIREBIRD PARA
RETIRAR AS PALAVRAS (E, DA, DAS, DE, DI, DO e DOS) 83

APÊNDICE F: PROCEDIMENTO (PROCEDURE) CRIADO NO FIREBIRD PARA
ATRIBUIR NÚMEROS A PALAVRAS QUE CONTÉM S OU Z 84

APÊNDICE G: CÓDIGO FONTE DE CONSULTA DO SISTEMA QUE REALIZA A
BUSCA FONÉTICA .. 86

vii

LISTA DE FIGURAS

Figura 1: Gráfico informando aumento nos pedidos online que implementaram a

busca fonética .. 5

Figura 2: Países falantes da Língua Portuguesa.. 11

Figura 3: Exemplo de novo fonema para a letra S de acordo com a palavra ‘vez’... . 46

Figura 4: Grafemas da letra Z. ... 49

Figura 5: Grafemas da letra X. ... 49

Figura 6: Tela para cadastro no sistema de busca fonética. 58

Figura 7: Tela para consultar nomes inseridos no sistema de busca fonética. 59

Figura 8: Visualização de um cadastro no sistema BuscaSonora.61

Figura 9:. Consulta no sistema BuscaSonora... 62

Figura 10: Tela inicial da instalação do Firebird para seleção do idioma69

Figura 11: Tela para configurar em que local deseja que a pasta do firebird seja

criada ... 70

Figura 12: Tela para configurar instalação como servidor ou como cliente 71

Figura 13: Tela para configurar recursos adicionais oferecidos pelo Firebird 72

viii

LISTA DE QUADROS

Quadro 1: Fonemas vocálicos e fonemas consonantais .. 8

Quadro 2: Regra de atribuição de números para consoantes no algoritmo Soundex 13

Quadro 3: Rastreio da palavra “Double” no algoritmo Soundex 14

Quadro 4: Rastreio da palavra Quadratically no algoritmo Soundex 14

Quadro 5: Rastreio do algoritmo Metaphone ... 16

Quadro 6: Códigos fonéticos e acordo com o algoritmo NYSIIS 20

Quadro 7: Resultado de palavras utilizando as funções Soundex, NYSIIS,

Metaphone, Double-Metaphone ... 21

Quadro 8: Exemplos de utilização do Soundex no SGBD MySQL 27

Quadro 9: Exemplos de utilização do Soundex, Metaphone e Double Metaphone no

SGBD PostGreSQL .. 27

Quadro 10 – Rastreio da palavra Casa e Caju no algoritmo Soundex 28

Quadro 11 – Exemplo da palavra Walter e Valter no algoritmo Soundex. 28

Quadro 12: Exemplo da palavra Numbers sendo tratada no Metaphone 29

Quadro 13: Exemplo da palavra Knowledge sendo tratada no Metaphone 29

Quadro 14: Exemplo dos nomes Xirlei e Shirlei sendo tratada no Metaphone 30

Quadro 15: Exemplo dos nomes Fatima e Fathima sendo tratada no Metaphone..... 30

Quadro 16: Dados inseridos após a execução do insert de acordo com a listagem de

Código Fonte 8 ... 33

Quadro 17: Resultado fonético para os nomes Karla e Carla 34

Quadro 18: Resultado fonético para os nomes Wagner e Vagner 35

Quadro 19: Resultado fonético para os nomes Fatima e Fathima 35

Quadro 20: Resultado fonético para o nome Acelino ... 35

Quadro 21: Demonstração de resultado para os nomes Acelino, Asselino e Ascelino36

Quadro 22: Resultado fonético para o nome Niltom ... 36

Quadro 23: Resultado fonético para o nome Nilton .. 36

ix

Quadro 24: Resultado fonético para o nome Gisele ... 37

Quadro 25: Resultado fonético para o nome Jisele .. 37

Quadro 26: Resultado fonético para o nome Ualace .. 37

Quadro 27: Resultado fonético para o nome Walace ... 37

Quadro 28: Estratégia do algoritmo Soundex para busca fonética 38

Quadro 29: Regras para geração do resultado de acordo com a DLL MetaUDF 39

Quadro 30: Resultado fonético para o nome Carla .. 39

Quadro 31: Resultado fonético para o nome Karla .. 39

Quadro 32: Resultado fonético para o nome Chico .. 40

Quadro 33: Resultado fonético para o nome Xico .. 40

Quadro 34: Resultado de busca com o nome Luiz no algoritmo de BUBLITZ, 2006 . 43

Quadro 35: Resultado de busca com o nome Luis no algoritmo de BUBLITZ, 2006 . 43

Quadro 36: Atribuição de Caracteres especiais para os fonemas X, Z e S 50

Quadro 37: Resultados de todos os possíveis grafemas para a palavra EXAME 50

Quadro 38: Demonstração do novo parâmetro TEM_S_OU_Z criado 55

Quadro 39: Atribuição de números 1 ou 0 no parâmetro TEM_S_OU_Z criado......... 55

Quadro 40: Lista de nomes cadastros no sistema de busca fonética proposto no

trabalho... 58

x

LISTA DE CÓDIGO-FONTE

Listagem de Código-Fonte 1: Pseudocódigo do algoritmo Soundex.........................13

Listagem de Código-Fonte 2: Pseudocódigo do Procedimento Metaphone..............15

Listagem de Código-Fonte 3: Código para o algoritmo Double Metaphone tratando a

letra C...17

Listagem de Código-Fonte 4 – Procedimento do pseudocódigo NYSIIS..................19

Listagem de Código-Fonte 5: Procedimento da busca fonética para o Firebird........31

Listagem de Código-Fonte 6– SQL para criação do banco de dados e criação da

tabela CLIENTE..32

Listagem de Código-Fonte 7– SQL para vinculo da UDF no software IBexpert.......32

Listagem de Código-Fonte 8– SQL para criação do gatilho (trigger).........................33

Listagem de Código-Fonte 9 – SQL para inserção dos dados na tabela Cliente.....33

Listagem de Código-Fonte 10 – SQL com seleção para o nome Karla.....................34

Listagem de Código-Fonte 11 – SQL com seleção para o nome Wagner.................34

Listagem de Código-Fonte 12 – SQL com seleção para o nome Fatima...................35

Listagem de Código-Fonte 13 – SQL com seleção para o nome Acelino..................35

Listagem de Código-Fonte 14 – SQL com seleção para o nome Niltom...................36

Listagem de Código-Fonte 15 – SQL com seleção para o nome Nilton....................36

Listagem de Código-Fonte 16 – SQL com seleção para o nome Gisele...................37

Listagem de Código-Fonte 17 – SQL com seleção para o nome Jisele....................37

Listagem de Código-Fonte 18 – SQL com seleção para o nome Ualace..................37

Listagem de Código-Fonte 19 – SQL com seleção para o nome Walace.................37

Listagem de Código-Fonte 20 – SQL com seleção para o nome Carla.....................39

Listagem de Código-Fonte 21 – SQL com seleção para o nome Karla.....................39

Listagem de Código-Fonte 22 – SQL com seleção para o nome Xico......................40

Listagem de Código-Fonte 23 – SQL com seleção para o nome Chico....................40

xi

Listagem de Código-Fonte 24 – Algoritmo incluído para tratamento da letra N e M no

final da palavra...42

Listagem de Código-Fonte 25 – Função criada para tratar a letra Z no final da

palavra..42

Listagem de Código-Fonte 26 – Algoritmo incluído para tratamento da letra S no final

da palavra..43

Listagem de Código-Fonte 27 – Algoritmo incluído para tratamento da letra I depois

da letra G...43

Listagem de Código-Fonte 28 – Algoritmo incluído para tratamento das vogais A, E,

I, O, U antes da letra U depois da letra G..44

Listagem de Código-Fonte 29 – SQL Algoritmo incluído para tratamento da letra “X”

no final da palavra e a letra “C” antes da letra S”..44

Listagem de Código-Fonte 30 – Algoritmo incluído para tratamento da letra “C”.....45

Listagem de Código-Fonte 31 – Algoritmo incluído para tratamento para os grafemas

da letra “S”...47

Listagem de Código-Fonte 32 – Algoritmo que Realiza as Variações de Acordo com

os Grafemas das Palavras...50

Listagem de Código-Fonte 33 – Algoritmo que Realiza busca fonética especial para

palavras que contém letras S e Z..53

Listagem de Código-Fonte 34 – Procedimento chamado CONTEMSOUZ...............56

xii

LISTA DE SIGLAS

SPED - Sistema Pública de Escrituração Digital

XML - Linguagem extensível de marcação

INPI - Instituto nacional da propriedade industrial

SGBD - Sistema gerenciador de Banco de Dados

DLL - Biblioteca de ligação dinâmica

UDF - Funções definidas pelo usuário

PLSQL - Extensão da linguagem SQL

1

1 INTRODUÇÃO

Atualmente, o uso de software em empresas tornou-se indispensável, levando

em consideração novas exigências contábeis, tais como: Sped (Sistema Público de

Escrituração Digital) Fiscal, Pis/Cofins e Contábil. Trata-se de informações tributárias

obrigatórias para envio à Receita Federal. O designo do projeto Sped é modificar a

forma como são realizadas as escriturações contábeis e análises das notas fiscais

eletrônicas emitidas pelas empresas, possibilitando um controle mais especifico das

diversas administrações tributárias, o que se constitui em um avanço tecnológico

(MAIA; OLIVEIRA, 2007).

 Existem outros projetos que entraram em vigor em todos os estados do

Brasil. É possível citar como exemplo a nota fiscal eletrônica e o conhecimento de

transporte eletrônico, uma realidade no país que, através de sua obrigatoriedade,

tornou prioridade o uso de software no país, pois todas as informações são

transmitidas por um arquivo de extensão XML1 (Linguagem extensível de marcação).

Obter essas informações arquivadas em banco de dados torna-se um

facilitador tanto para geração de informações à Receita Federal quanto para

gerenciamento e análises administrativas, possibilitando que esses procedimentos

adquiram mais agilidade no controle das informações que atualmente se tornaram

indispensáveis para as empresas.

O uso de cadastros é realizado com grande frequência por diversas pessoas

da empresa. Esse processo, por ser manual, está sujeito a possíveis problemas

como: erros por falha na interpretação das informações, falhas na digitação de

1 Com o XML as informações são trafegadas com mais flexibilidade, resultando em um arquivo leve e
de fácil compartilhamento eletrônico. Tornando uma opção aceitável para publicação e
compartilhamento em grande quantidade (W3, 2011).

2

palavras, devido à riqueza ortográfica da Língua Portuguesa e, consequentemente,

dificuldade de recuperar informações já cadastradas.

A busca fonética é um mecanismo que visa efetuar consultas no banco de

dados pelo som das letras das palavras e não pela forma como elas são escritas.

Assim, palavras que possuem escritas diferentes, porém possuem um mesmo som,

são recuperadas como resultado de busca de uma determinada palavra específica.

As palavras “Chico” e “Xico” são exemplos de palavras que possuem escritas

diferentes, mas possuem sons iguais. Atualmente, uma busca simples pela palavra

“Chico” em um campo de um banco de dados não traria como resultado a palavra

“Xico”. Porém, o intuito da busca fonética é que ambas sejam retornadas, pois

possuem o mesmo som.

Atualmente esse problema já foi resolvido para o idioma Inglês através dos

algoritmos Soundex, Metaphone e Double Metaphone, distribuídos nativamente na

maioria dos SGDB. Porém, para o idioma português, esses algoritmos não são

aplicados devido à diferença em questões gramaticais e ortográficas.

Além de agilidade nas consultas ao banco de dados, a busca fonética traz

confiabilidade para o software, exercendo a função de um mecanismo de busca

importante para o sistema. Com base nesses benefícios, o atendimento ao cliente se

tornará mais flexível, diminuindo o risco de ocorrer cadastros duplicados.

O processo de busca através do som pode ser utilizado tanto para sistemas

comerciais usados em aplicações desktop quanto para sites e-commerce, devido ao

grande crescimento das lojas virtuais no Brasil. Portanto, o uso da busca fonética

torna-se indispensável, levando em consideração que cerca de 17,6 milhões de

consumidores compraram pela internet em 2009, ou seja, 26% dos internautas

brasileiros (CURSODEECOMMERCE, 2011).

3

1.1 O problema e sua importância

Com o acesso cada vez mais popularizado à computação entre empresas,

tanto de pequeno, médio ou grande porte, ter um gerenciador de banco de dados,

que possibilite guardar as informações para análises comerciais, financeiras e

administrativas tornou-se importante. Devido a essa importância, os cadastros são

realizados com grande frequência, gerando como problema possíveis erros por falha

na interpretação das informações ou por falha na digitação de palavras, levando em

consideração a dificuldade em realizar uma escrita correta que a Língua Portuguesa

traz no cotidiano.

Devido às crescentes exigências contábeis e empresariais para melhor

administração dos negócios das empresas, há um aumento crescente do uso de

softwares; consequentemente, ocorre também o aumento de bases de dados para

controle das informações. A redundância de dados é um problema que pode ocorrer

durante todo o processo de utilização do software, ocasionando perda de

performance/desempenho.

A repetição de dados desnecessários (redundância) contribui para aumento

do tamanho do banco de dados da empresa. É sabido que, quanto maior o volume

de dados armazenados, maiores serão os tempos de busca e atualização dos

dados. Sendo assim, a redundância gera prejuízos no funcionamento do banco de

dados e, consequentemente, das aplicações.

 É possível citar como exemplo o seguinte processo de venda em uma

empresa: uma pessoa, ao realizar um compra via telefone, diz que seu nome é

“Vanessa Assunção”, e o vendedor, para realizar a venda, efetua o cadastro com o

nome tal qual ele escuta da pessoa, gerando o código de cliente 100. Porém, em

outro momento, a mesma cliente se dirige à empresa para realizar uma nova compra

no próprio estabelecimento. Ao chegar ao balcão, um vendedor pede a sua

identidade para efetuar a busca do cadastro e verifica que o nome da pessoa é

“Wanessa Assunssão”. Não encontrando esse nome, ele efetua outro cadastro, com

código 150, que, na verdade, corresponde à mesma pessoa.

Esse exemplo mostra que uma mesma pessoa foi cadastrada em dois

códigos diferentes (100 e 150) devido a problemas de leitura/escrita de palavras que

possuem a mesma pronúncia. Trata-se de um problema para empresa, que não

conseguirá, a partir desse momento, efetuar análises de crédito corretas, nem

4

cobranças, relatórios gerenciais de vendas, entre outros, para esse cliente. Isso

porque, na visão do banco de dados, trata-se de dois clientes distintos (um com

código 100 e outro 150),.

A ocorrência de situações como a descrita acima é comum nas empresas,

devido à grande dificuldade em implementar as regras fonéticas do português e ao

avanço que pode ocorrer nas empresas em termos de agilidade nos processos e

conferência de dados nos bancos de dados. Neste trabalho é citado um estudo da

fonética da Língua Portuguesa, com exemplos de palavras foneticamente parecidas,

porém escritas de modo diferente. No projeto também é feita uma análise dos

algoritmos já utilizados para solução do problema para a Língua Inglesa,

comparando a eficiência dos resultados com exemplos tanto em inglês quanto em

português.

Ter um banco de dados livre de duplicidades cadastrais ou até mesmo de

dados que não serão usados para futuras análises é um desafio para seus

administradores. Devido a essa dificuldade, a busca fonética ajuda – através de

estratégias que analisam o fonema da palavra e não a forma como ela é escrita –

para obtenção de resultados confiáveis.

O tema ‘busca fonética em banco de dados’ ainda não possui uma vasta

publicação sobre o assunto, tanto para o idioma português quanto para o idioma

inglês. Esse é um fator que dificulta a implementação de soluções sobre o assunto, o

que aumenta a sua importância em mercados brasileiros, uma vez que o seu

desenvolvimento acarretaria um melhor desempenho para empresas

desenvolvedoras de softwares e gerenciadores de banco de dados. Com a

implementação dessa função, o índice de melhoria e economia de tempo se tornaria

um diferencial para as demais empresas.

Foi possível a obtenção de poucos exemplos atuais de utilização da pesquisa

fonética em empresas brasileiras, nas quais o uso se limitou a aplicações web,

fugindo das aplicações desktop. É possível citar o uso da busca fonética nos

projetos do website Help Saúde, que implementa um inédito aperfeiçoamento em

sites de buscas de remédios (HELPSAUDE, 2011). Considerando a importância de

implementações além do território brasileiro, o projeto INPI realizou parceria de

bases integradas com o mesmo órgão de Portugal, cujo maior diferencial foi o uso

da busca fonética, visando ampliar o propósito e a confiabilidade do exame de

marcas INPI (INPI, 2011).

5

Com a busca fonética, é possível resolver questões de economia de tempo e

custo, pois os pedidos são realizados online com maior flexibilidade na consulta e na

obtenção imediata de informação/resultado. Após a implementação da busca

fonética no projeto do INPI (Instituto Nacional da Propriedade Industrial), o resultado

encontrado pelo sistema revelou 85% de semelhança na busca realizada pelo

usuário, utilizando busca fonética avançada e simples, em que o aumento de

registros online foi crescente (PEREIRA, 2011), como pode ser visualizado na

Figura 1.

Figura 1 – Aumento nos pedidos online que implementaram a busca fonética

Fonte: Serviços Online INPI – Pesquisas e Registros.

1.2 Objetivos

1.2.1 Objetivo Geral

Propor soluções ou melhorias para a busca fonética no mercado brasileiro

com os SGBD Firebird, MYSQL e PostGree.

6

1.2.2 Objetivos específicos

• Apresentar as regras fonéticas da Língua Portuguesa em contrapartida

à fonética do idioma inglês.

• Detalhar e explicar os algoritmos mais utilizados na estratégia de busca

fonética: Soundex, Metaphone e Double Metaphone.

• Verificar se existem soluções para a busca fonética no idioma

Português nos SGBD Firebird, MySQL e PostGree.

• Com base nos resultados encontrados no item anterior, propor

melhorias ou novas soluções para a busca fonética no idioma

português.

• Desenvolver estudo de caso para validação do sistema BuscaSonora e

comprovação do funcionamento do mesmo.

1.3 Organização do Trabalho

A Língua Portuguesa é um desafio, pois contém diversas regras gramaticais e

não há padronização para criação de nomes. O capítulo 2 apresenta a explicação

dos problemas que serão encontrados para elaboração do algoritmo fonético para a

Língua Portuguesa. São apresentados os algoritmos já criados para a Língua

Inglesa, com explicação detalhada do que a função executa, assim como exemplos

que definem de forma clara os resultados obtidos através das pesquisas.

O capítulo 3 apresenta os trabalhos relacionados ao tema, explicando

resumidamente os projetos e artigos Busca Fonética em Português do Brasil,

Protótipo de Um Reconhecimento Fonético Aplicado ao Banco de Dados Oracle e

Código Fonético no Firebird. O capítulo 4 apresenta a metodologia utilizada para o

desenvolvimento do projeto. E no capitulo 5 é mostrado o desenvolvimento do

trabalho e o apêndice trata da instalação do gerenciador de banco de dados Firebird,

incluindo o detalhamento de todo o processo de instalação para o sistema

operacional Windows junto a demonstração dos códigos utilizados para

desenvolvimento da busca fonética.

7

2 REFERENCIAL TEÓRICO

Neste capítulo são apresentados estudos sobre os conceitos da busca

fonética e a atribuição desses conceitos para solução computacional de acordo com

as línguas Inglesa e Portuguesa. Também é mostrado como problema o não

aprimoramento das soluções existentes para mercados brasileiros, no qual existem

soluções que não resolvem satisfatoriamente a diversidade da Língua Portuguesa.

Além disso, há o intuito de apresentar com clareza as soluções existentes e a

importância da busca fonética tanto para empresas quanto para órgãos públicos.

2.1 Fonética da Língua Portuguesa

Para entender com mais clareza todos os algoritmos que serão citados neste

trabalho para que, futuramente, seja possível implementá-los em sua aplicação, é

necessário ter conhecimento do que é a fonética, seu histórico e quais as definições

que são atribuídas a esse recurso.

Fonética é a preocupação de investigação mais antiga da humanidade.

Atualmente, para a Língua Portuguesa, as pesquisas estão voltadas para geração

de algoritmos que resolvam a grande diversidade que ela traz na sua gramática.

Porém, as pesquisas ainda não trouxeram um resultado satisfatório (CAGLIARI,

2006). A fonética se preocupa com a parte significante da palavra e não com todo o

seu conteúdo, tendo como exemplo os algoritmos que implementam exatamente o

que é a sua definição. Atualmente, o idioma português utiliza 31 fonemas, sendo 12

vocálicos e 19 consonantais (UOL, 2011), apresentados no Quadro 1.

8

Quadro 1 – Fonemas vocálicos e fonemas consonantais

FONEMAS REPRESENTAÇÃO EXEMPLO

Tipo:Oral

/a/ A Amor
/e/ E Beijo

/é/ E ou É berro, café

/i/ I Ilha

/o/ O Olho

/ó/ O ou Ó cola, mói
/u/ U Uva

Tipo: Nasal

/ã/
Ã Rã

AM Campo
NA Anta

EM Sempre
EM Sente

IM Sim
IN Cinto

/õ/
Õ Põe

OM Pomba
ON Ponta

UM Bumbo
UM Mundo

Tipo: Fonema Consonantal
/p/ P Pai
/b/ B Bola

/m/ M Mãe

/f/ F Faca

/v/ V Vaca

/t/ T Tio

/d/ D Dado

/n/ N Nada

/nh/ NH Nhoque

/l/ L Lua

/lh/ LH Lhama

/r/ R Caro

Tipo: Fonema Consonantal

/rr/
RR Carro
R rosa, terra

/z/ Z Zebra

9

S Rosa
X Exato

/s/

S seda, valsa
SS Massa
Ç Maçã
C Cedo

SC Descer
SÇ Desça
X Trouxe

XC Excesso

/j/
J Jeito
G Giz

/x/
X Xis

CH Chave

/g/
G Gude

GU Gueixa

/q/
C Cume

QU Queixa

Legenda
 Fonemas Orais

 Fonemas Nasais

 Fonemas Consonantais Simples

 Fonemas Consonantais com maior possibilidade de erros na interpretação

Fonte: UOL (2011), Adaptado pelo autor.

Quanto à representação dos fonemas consonantais, todo o entendimento fica

um pouco mais complexo, porque a sua representação entre o som e a forma de

escrita pode ser simples ou mais complexa. Por exemplo, a palavra “caminho” se

escreve com o dígrafo “NH”, ou seja, duas letras representam apenas um fonema.

No Quadro 1, foram representados todos os fonemas consonantais, havendo

uma separação entre os fonemas mais simples de interpretação e os mais

complexos, onde uma letra pode exercer o mesmo som, mesmo sendo escrita com

outra consoante na palavra. É possível citar como exemplo o fonema consonantal

/Z/, que pode ser representado de três maneiras diferentes: na palavra ‘zebra’, usa-

se a letra Z; na palavra ‘rosa’, a letra S; e na palavra ‘exato’, a letra X.

Em relação a nomes próprios, a Língua Portuguesa não tem padrões, uma

vez que há possibilidade de se criarem nomes com diversas formas de escrita. É

possível citar, como exemplo, os nomes Phelipe e Felipe, Karla e Carla, Acelino e

Ascelino, Luis e Luiz.

10

A implementação da busca fonética para a Língua Portuguesa, analisando os

algoritmos que resolvem o problema apenas no idioma inglês, é um desafio. Nesse

sentido, é necessário saber a diferença de pronúncia entre os dois idiomas.

Segundo Schütz (2008),as diferenças são:

• CORRELAÇÃO PRONÚNCIA x ORTOGRAFIA: Pensando na
correlação pronúncia x ortografia, é difícil a interpretação oral das
palavras em inglês, quanto ao português a pronúncia fica um pouco
mais clara e constante. Exemplo: Table [teibou]

• RELAÇÃO VOGAIS x CONSOANTES: O ingl ês exige um esforço
muscular e uma movimentação de seus órgãos, especialmente da
língua, significativamente diferentes, quando comparado à fonética do
português. O inglês é rico em consoantes enquanto que o português
é abundan te na ocorrência de vogais e combinações de vogais
(ditongos e tritongos). Ex: December is the twelfth month of the year. /
Eu vou ao Uruguai e o Áureo ao Piauí. / Eu sou europeu.

• SINALIZAÇÃO FONÉTICA: O inglês é uma língua mais econômica em
sílabas do que o português. O número de palavras monossilábicas é
muito superior quando comparado ao português. Ex:

beer / cer-ve-ja
book / li-vro
car / car-ro
dream / so-nho

• NÚMERO DE FONEMAS: Devido à economia no uso de sílabas, o
inglês precisa de um número maior de sons vocálicos para diferenciar
as inúmeras palavras monossilábicas, enquanto que o português
apresenta um inventário de 7 vogais,

• RITMO: O ritmo da fala também é uma característica importante da
língua. Enquanto que o português é uma língua syllable-timed2, onde
cada sílaba é pronunciada com certa clareza, o inglês é stress-timed3,
resultando numa compactação de sílabas, produzindo contrações e
exibindo um fenômeno de redução de vogais como conseqüência.

Segundo Vieira (2010), o português é a língua oficial de sete países e a quinta

língua mais falada no mundo, atrás apenas do chinês (quase 845 milhões de

falantes), do espanhol (quase 358 milhões de falantes nativos), do inglês (quase 322

milhões de falantes nativos), e do hindu/urdu (quase 200 milhões de falantes

nativos). É falado por aproximadamente 200 milhões de pessoas nos países

(Angola, Brasil, Cabo Verde, Guiné Bissau, Moçambique, Portugal, São Tomé e

Príncipe, Timor Leste), que se enquadram nos países lusófonos, ou seja, países que

falantes da Língua Portuguesa, destacados na Figura 2.

2 Cronometrada por sílabas (tradução proposta pelo autor).
3 Cronometrada por acentuação tônica (tradução proposta pelo autor).

11

Figura 2: Países falantes da Língua Portuguesa
Fonte: WIKIPEDIA, 2011

Com o conhecimento mais aprofundado sobre a gramática da Língua Portuguesa,

será possível um entendimento mais claro dos próximos capítulos, pois serão

explicados com detalhes estratégias para solução da busca fonética.

2.2 Busca fonética

A busca por agilidade e resultados que facilitem o dia a dia de uma empresa

ou mesmo de um órgão público é de extrema importância. Para isso, ter um banco

de dados com função fonética é importante para adquirir confiabilidade nas

pesquisas. A busca fonética é uma estratégia pela qual, de acordo com a palavra,

são aplicadas regras gramaticais para obtenção de um código fonético, através do

qual, palavras que contêm escritas diferenciadas, porém com a mesma fonética,

possam ser encontradas na aplicação.

Com a busca de resultados positivos e com a grande competitividade no

mercado empresarial, as informações contidas nos sistemas gerenciadores de

banco de dados são importantes, tanto para análises comerciais quanto para

gerenciamento das informações cadastradas.

Segundo Thorn (2011), o algoritmo de busca fonética dos bancos de dados

citados neste trabalho funciona somente para a língua inglesa, apresentando

12

problemas com outros idiomas e gerando, portanto, uma limitação para o mercado

brasileiro.

Existem diversas formas ou estratégias para programar a busca fonética no

banco de dados. Nesse sentido, este trabalho visa implementar e aperfeiçoar a

busca fonética para a Língua Portuguesa, a qual contém uma gama de palavras

que, ao serem pronunciadas, apresentam o mesmo som, a mesma fonética, embora

possam ser escritas de diversas formas diferentes, o que acaba por gerar um

problema típico de aplicação computacional em relação à consulta correta do tema

desejado.

Como se viu, não é possível a implementação da busca fonética para outros

idiomas além do inglês, usando apenas as funções nativas do banco de dados. É

necessário um estudo sobre o fonema da gramática para novas implementações ou

aperfeiçoamentos no código existente. Existem 3 algoritmos que vêm nativos nos

bancos de dados MYSQL e Postgree: Soundex, Metaphone e Double Metaphone;

para o Firebird, existem implementações que possibilitam usar esse recurso. Os

capítulos 2.3, 2.4, 2.5 e 2.6 apresentarão, em detalhes, cada uma das estratégias.

2.3 Soundex

O algoritmo Soundex foi criado por Robert C. Russell no início do século XX,

tendo como principal objetivo rastrear a cidade e os nomes de famílias de imigrantes

não americanos durante o período do censo de 1918 a 1920. O objetivo de Russell

era ordenar as palavras não em ordem alfabética e sim pela forma como soam as

palavras.

A patente original foi arquivada no dia 25 de outubro 1917, quando se

intitulava “Index”, simplesmente. Com o passar do tempo, surgiram outras funções

para a solução do problema;entretanto, de acordo com os SGBD estudados neste

trabalho, o Soundex será detalhado pelo fato de ser uma função incluída

nativamente na maioria dos sistemas de gerenciamento de bancos de dados. Na

Listagem de Código Fonte 1, é apresentado o seu pseudocódigo.

13

Procedimento Soundex
Inicio

1) Excluir todas as letras acentuadas;
2) Manter a primeira letra da palavra e atribuir zero para as
letras;
(a, e, i, o, u, h, w, y);
3) Atribuir os seguintes números para as letras restantes de
acordo com o Quadro 2;
4) Remover dígitos iguais (pares) resultantes do passo 2;
5) Converter para a seqüência “letra, dígito, dígito, dígito”.

Fim

Listagem de Código-Fonte 1: Pseudocódigo do algoritmo Soundex.

Fonte: DONALD, 1973

O Quadro 2 mostra como é feita no Soundex a classificação das consoantes,

além das regras de como deve ser feita a troca das consoantes por números. A

regra segue a classificação de sons das consoantes pronunciados no idioma inglês

(labiais e lábio-dental, guturais e sibilante, dental, palatal fricativa, lábio nasal e

fricativa). Cada letra, de acordo com sua classificação, é substituída por um número

correspondente (FRANTZ, 2009).

Quadro 2 – Regra de atribuição de números para consoantes no algoritmo Soundex

Classificação Letras Número
Labiais e Lábio-dental B,F,P,V 1
Guturais e sibilante C,G,J,K,Q,S,X,Z 2
Dental D,T 3
Palatal fricativa L 4
Lábio nasal M,N 5
Fricativa R 6

Fonte: FRANTZ, 2009 - Adaptada pelo autor.

Para maior facilidade de entendimento do algoritmo criado, será realizado um

rastreio do pseudocódigo apresentado na Listagem de Código Fonte 1, mostrando o

passo a passo das rotinas para as quais a função executa. O pseudocódigo

mostrado pode ser encontrado no livro escrito por Donald E. Knuth, em 1973.

Para o rastreio foram escolhidos as palavras “Double” e “Quadratically” – a

primeira contempla a atribuição de zeros à esquerda de acordo com o passo 5 do

algoritmo e a outra irá completar a sequência desejada de “letra, dígito, dígito,

dígito”. Os rastreios são apresentados nos Quadros 3 e 4.

14

Quadro 3 – Rastreio da palavra Double no algoritmo Soundex

Palavra Passo Resultado

Double 1- Manter a primeira letra da palavra (D), e
atribuir zero para as letras O, U e E.

D00BL0

Double 2- Atribuir número 1 para letra B, atribuir número
4 para a letra L.

D00140

Double 3- Remover dígitos iguais () D00140
Double 4- Passar para sequência Letra, dígito, dígito,

dígito e acrescentar zero a esquerda quando o
resultado for menor que 3 dígitos.

D140

Fonte: Elaborada pelo autor.

Quadro 4 – Rastreio da palavra Quadratically no algoritmo Soundex

Palavra Passo Resultado

Quadratically 1- Manter a primeira letra da palavra (Q), e
atribuir zero para as letras U, A, I, Y.

Q00DR0T0C0LL0

Quadratically 2- Atribuir número 3 para letra D, T, número 6
para a letra R, número 2 para a letra C,
número 4 para a letra L.

Q00360302440

Quadratically 3- Remover dígitos iguais (LL) Q360302040

Quadratically 4- Passar para sequência Letra, dígito, dígito,
dígito sem acrescentar zeros à direita porque
a palavra já contempla a sequência do
algoritmo.

Q363

Fonte: Elaborada pelo autor.

Para que seja possível realizar a busca no banco de dados, existe um campo

específico para receber o resultado fonético da palavra, e é neste campo que a

busca será realizada. Assim, o comando de pesquisa consultará o código fonético

Q363 ou D140 de acordo com os exemplos mostrados nos Quadros 3 e 4.

De acordo com o estudo realizado para as palavras Double e Quadraticall, o

algoritmo Soundex contempla satisfatoriamente todos os passos que o algoritmo

realiza, gerando um resultado fonético que pode ser utilizado para futuras consultas

aos bancos de dados através dessa função.

O Soundex contém limitações quanto ao não funcionamento para outros

idiomas, pelo fato de ter sido desenvolvido para a língua inglesa, mostrando

ineficiência na atribuição e aplicação a nomes judeus, germânicos e eslavos

(FRANTZ, 2009).

15

2.4 Metaphone

 O algoritmo Metaphone foi desenvolvido por Lawrence Philips em 1990,

muitos anos após a criação do algoritmo Soundex, desenvolvido por Russell em

1918. O código criado por Lawrence foi publicado em 1990 pela revista Computer

Language Magazine (volume 7, número 12, página 38). Seu principal objetivo é

resolver ineficiências do Soundex, sem limites de caracteres para o resultado final. O

Metaphone contém uma cadeia de caracteres variável e realiza um conjunto maior

de regras também para o idioma em Inglês, enquanto o Soundex limita-se em Letra-

dígito-dígito-dígito.

O algoritmo do Metaphone é mais extenso, pelo fato de tratar mais

detalhadamente a língua inglesa e de ter regras específicas para algumas

consoantes. A Listagem de Código Fonte 2 mostra detalhadamente o procedimento

do Metaphone.

Procedimento Metaphone
Inicio

1) São realizados tratamentos em 16 consoantes
0BFHJKLMNPRSTWXY, sendo que o 0 representa ‘TH’;
2) Vogais A, E, I, O e U são usadas somente se estiverem no
inicio da palavra;
3) Tirar letras iguais, com exceção da letra c;
4) Se a palavra começar com KN, GN, PN, AE, CR retirar a
primeira letra;
5) Retirar a letra B se for depois de M e no final da palavra;
6) C se transforma em X seguido por IA ou H;
C se transforma em S seguido por I, E ou Y, caso contrário se
transforma em K;
7) D se transforma em J seguido de GE, RG, ou IG. Caso
contrário D se transforma em T;
8) Tirar letra G se seguido por H e se o H não estiver no fim
ou antes de uma vogal;
Tirar letra G se seguido por N ou NED estando no final da
palavra;
9) G se transforma em J se antes de I, E ou Y. Caso contrário
G se transforma em K;
10) Retirar H se estiver depois de uma vogal;
11) CK transforma-se em K;
12) PK se transforma em F;
13) Q se transforma em K;
14) S se transforma em X se seguido por H, IO, IA;
15) T transforma em X se seguido por IA, IO, TH (lembrando que
para TH é atribuído o número 0). Retirar T se seguido por CH;

16

16) V transforma em F;
17) WH se transforma em W se estiverem no início da palavra e
retirar o W se não estiverem seguidas por uma vogal;
18) X se transforma em S se estiver no começo, caso contrário
X se transforma em KS;
19) Retirar Y se não estiver seguidas por uma vogal;
20) Z se transforma em S.

Fim

Listagem de Código-Fonte 2: Pseudocódigo do Procedimento Metaphone.
Fonte: GALVEZ, 2006.

Quadro 5 – Rastreio do algoritmo Metaphone

Regra Condição/Exemplos
São realizados tratamentos em 16 consoantes
0BFHJKLMNPRSTWXY

0 = th

Vogais A, E, I, O e U são usadas somente se estiverem
no início da palavra

Ex: After, england, able

Tirar letras iguais, com exceção da letra C Ex: All, fall
Exemplo de palavra que
não retira a letra c
(according)

Se a palavra começar com KN, GN, PN, AE, CR Retirar a primeira letra

Retirar a letra B se for depois de M e no final da palavra Ex: Numbers

C transforma-se em X seguido por IA ou H
C transforma-se em S seguido por I, E ou Y; caso
contrário, transforma-se em K.

Ex: sufficient, especially

D transforma-se em J seguido de GE, RG, ou IG; caso
contrário, D se transforma em T

Tirar letra G se seguida por H e se o H não estiver no fim
ou antes de uma vogal.
Tirar letra G se seguido por N ou NED, estando no final
da palavra.

G transforma-se em J se antes de I, E ou Y; cso contrário,
G, transforma-se em K.

Origin, give

Retirar H se estiver depois de uma vogal. When

CK transforma-se em K

PK transforma-se em F

Q transforma-se em K

S transforma-se em X se seguido por H, IO, IA Shakespeare

T transforma-se em X se seguido por IA, IO, TH
(lembrando que para TH é atribuído o número 0). Retirar
T se seguido por CH

Examination

V transforma-se em F

WH transforma-se em W se estiverem no início da
palavra; retira-se o W se não estiverem seguidas por uma
vogal.

Who

17

X transforma-se em S se estiver no começo; caso
contrário X, transforma-se em KS

Except

Retirar Y se não estiver seguida por uma vogal

Z transforma-se em S

Fonte: Elaborada pelo autor.

2.5 Double Metaphone

O algoritmo Double Metaphone também foi criado e publicado por Lawrence

Philips em 2000 na revista C/C++ Users Journal, através do artigo "The Double

Metaphone Search Algorithm (PHILLIPS, 2011). Seu maior diferencial era o retorno de

duas chaves se uma palavra tivesse duas pronúncias diferentes, por isso a inclusão

da palavra Double no nome da função. Inicialmente em C++, foi implementado para

a língua inglesa, assim como os demais algoritmos fonéticos.

O Double Metaphone corrige irregularidades de várias línguas, dentre elas:

inglês, alemão, grego, francês, italiano e outras. Portanto, usa-se um conjunto de

regras e análises mais complexas para resolver essas questões (PHILLIPS, 2011).

 É possível citar, por exemplo, as regras que o algoritmo realiza quando se

trata da letra ‘C’, o que pode ser observado na Listagem de Código-Fonte 3 parte do

algoritmo.

 case 'C':
 if((current > 1)//various germanic
 AND !IsVowel(current - 2)
 AND StringAt((current - 1), 3, "ACH", "")
 AND ((GetAt(current + 2) != 'I')
 AND ((GetAt(current + 2) != 'E')
 OR StringAt((current - 2), 6, "BACHER", "MACHER", "")))) {
 MetaphAdd("K"); current +=2; break;
 }
 //special case 'caesar'
 if((current == 0) AND StringAt(current, 6, "CAESAR", "")) {
 MetaphAdd("S"); current +=2; break;
 }
 if(StringAt(current, 4, "CHIA", "")) { //italian 'chianti'
 MetaphAdd("K"); current +=2; break;
 }
 if(StringAt(current, 2, "CH", "")) {
 //find 'michael'
 if((current > 0) AND StringAt(current, 4, "CHAE", "")) {
 MetaphAdd("K", "X"); current +=2; break;
 }

18

 if((current == 0) //greek roots e.g. 'chemistry', 'chorus'
 AND (StringAt((current + 1), 5, "HARAC", "HARIS", "")
 OR StringAt((current + 1), 3, "HOR",
 "HYM", "HIA", "HEM", ""))
 AND !StringAt(0, 5, "CHORE", "")) {

 MetaphAdd("K"); current +=2; break;
 }
 //germanic, greek, or otherwise 'ch' for 'kh' sound
 if((StringAt(0, 4, "VAN ", "VON ", "")
 OR StringAt(0, 3, "SCH", ""))

 // 'architect but not 'arch', 'orchestra', 'orchid'
 OR StringAt((current - 2), 6, "ORCHES", "ARCHIT",
 "ORCHID")
 OR StringAt((current + 2), 1, "T", "S", "")
 OR ((StringAt((current - 1), 1, "A", "O", "U", "E", "")
 OR (current == 0))

 //e.g., 'wachtler', 'wechsler', but not 'tichner'
 AND StringAt((current + 2), 1, "L", "R", "N", "M", "B",
 "H", "F", "V", "W", " ", ""))) {
 MetaphAdd("K");
 } else {
 if(current > 0) {
 if(StringAt(0, 2, "MC", "")) //e.g., "McHugh"
 MetaphAdd("K");
 else MetaphAdd("X", "K");
 }
 else MetaphAdd("X");
 }
 current +=2; break;
 }
 //e.g, 'czerny'
 if(StringAt(current, 2, "CZ", "")
 AND !StringAt((current - 2), 4, "WICZ", "")) {
 MetaphAdd("S", "X"); current += 2; break;
 }
 //e.g., 'focaccia'
 if(StringAt((current + 1), 3, "CIA", "")) {
 MetaphAdd("X"); current += 3; break;
 }
 //double 'C', but not if e.g. 'McClellan'
 if(StringAt(current, 2, "CC", "") AND !((current == 1)
 AND (GetAt(0) == 'M')))
 //'bellocchio' but not 'bacchus'
 if(StringAt((current + 2), 1, "I", "E", "H")
 AND !StringAt((current + 2), 2, "HU", "")) {

 //'accident', 'accede' 'succeed'
 if(((current == 1) AND (GetAt(current - 1) == 'A'))
 OR StringAt((current - 1), 5, "UCCEE", "UCCES", ""))

 MetaphAdd("KS");
 else //'bacci', 'bertucci', other italian

19

 MetaphAdd("X");

 current += 3; break;
 } else {//Pierce's rule
 MetaphAdd("K"); current += 2; break;
 }
 if(StringAt(current, 2, "CK", "CG", "CQ", "")) {
 MetaphAdd("K"); current += 2; break;
 }
 if(StringAt(current, 2, "CI", "CE", "CY", "")) {
 //italian vs. english
 if(StringAt(current, 3, "CIO", "CIE", "CIA", ""))
 MetaphAdd("S", "X");
 else
 MetaphAdd("S");
 current += 2; break;
 } //else
 MetaphAdd("K");

 //name sent in 'mac caffrey', 'mac gregor
 if(StringAt((current + 1), 2, " C", " Q", " G", ""))
 current += 3;
 else
 if(StringAt((current + 1), 1, "C", "K", "Q", "")
 AND !StringAt((current + 1), 2, "CE", "CI", ""))

 current += 2; else current += 1;
 break;

Listagem de Código-Fonte 3: Código para o algoritmo Double Metaphone tratando a letra C
Fonte: PHILLIPS, 2006.

2.6 NYSIIS

 Conhecido como NYSIIS (New York State Identification and Intelligence

Systems), o Sistema de Identificação e Inteligência do Estado de Nova York foi

desenvolvido em 1970 por Taft e contém um aumento de 2,73% de precisão em

relação ao Soundex. Ou seja, a função Soundex contém 95,99% de precisão,

enquanto o NYSIIS possui precisão de 98,72 (GALVEZ, 2006). O algoritmo se

resume em realizar as seguintes estratégias:

Procedimento NYSIIS
Inicio
 1) O primeiro caractere da chave fonética corresponde ao
primeiro caractere da palavra

2)Traduz os primeiros caracteres da seguinte forma:
 MAC=>MCC
 PH=>FF

20

KN=>NN
K=>C

 SCH=>SSS
3) Traduz os últimos caracteres da seguinte forma:

EE=>Y
 IE=>Y

DT=>D
 RT=>D

RD=>D
NT=>D

 ND=>D
 4) Se o último caractere for S, então elimina-o;

5) Se o último caractere for A, então elimina-o;
6) Se os últimos caracteres forem A ou Y, e ntão substitui por
Y.

Fim
Listagem de Código-Fonte 4: Procedimento do pseudocódigo NYSIIS
Fonte: GALVEZ, 2006

 De acordo com o estudo de Gálvez (2006), executando o algoritmo para as

palavras do Quadro 6, os resultados da função fonética serão:

Quadro 6 – Códigos fonéticos e acordo com o algoritmo NYSIIS

Fonte: GALVEZ, 2006.

2.7 Comparativo entre os algoritmos de busca fonética

No Quadro 7, é possível visualizar claramente os resultados e uma

comparação de cada função fonética estudada nos capítulos acima. Observa-se

que, de acordo com cada rotina específica, o tratamento para as consoantes e

vogais será diferente e que cada algoritmo fornece novas estratégias com o intuito

de aumentar o desempenho da busca fonética.

21

Quadro 7 – Resultado de palavras utilizando as funções Soundex, NYSIIS,
Metaphone, Double-Metaphone.

Fonte: HJORT et al, 2007.

 De acordo com o Quadro 7, é possível visualizar os diferentes resultados que

cada algoritmo propõe para cada nome descrito. A evolução das estratégias e dos

estudos para melhorar o resultado e simplificar a busca com o intuito de exercer

eficiência nas consultas utilizando a busca fonética.

Quanto ao algoritmo Soundex percebe-se que a primeira letra é mantida e

números são atribuídos para as demais letras, diferente das funções NYSIIS,

Metaphone e Double-Metaphone, que não atribuem número para as letras e

realizam novas formas de geração do código fonético.

22

3 TRABALHOS RELACIONADOS

Neste capítulo, estão relacionados os trabalhos presentes na literatura

semelhantes ao escopo deste.

Existem poucas pesquisas e trabalhos na área de banco de dados voltados

para a obtenção de soluções mais eficazes para a busca fonética. A maioria das

funções restringe-se somente em algoritmos que estão contidos nas instalações dos

SGBD, tais funções foram descritas no decorrer de todo este projeto. Portanto, a

obtenção de poucos trabalhos sobre o assunto é devido a pequena quantidade de

pesquisas, mas possibilitando a citação dos trabalhos abaixo:

- Busca Fonética em Português do Brasil (Lucena, 2007): Dissertação que

apresenta um novo código fonético para o Português do Brasil. Elabora uma nova

estratégia para soluções mais eficazes, onde a chamou de função BUSCABR.

Durante o projeto houve uma preocupação em exemplificar a diversidade da Língua

Portuguesa e os possíveis erros que ocorrem na escrita e no entendimento das

palavras. O objetivo do estudo é promover uma função mais abrangente, gerando

como resultado mais agilidade nas consultas.

- Protótipo de Um Reconhecimento Fonético Aplicado ao Banco de Dados

Oracle(ROSSETTO, 2000): Trabalho de conclusão de curso que exemplifica de

forma clara a implementação da função fonética para o banco de dados Oracle. O

projeto realizado específica em soluções para aplicações WEB. Tem como principal

objetivo diminuir a quantidade de registros que não são encontrados no banco de

dados ou que ficam perdidos por conta de cadastros incorretos. A função foi

elaborada em PL/SQL e o Oracle Web Server.

- Código Fonético no Firebird (BUBLITZ, 2006): Artigo escrito na revista Clube

Delphi, que exemplifique e ensina a criação de uma UDF para vinculo no SGBD

Firebird, tendo como principal objetivo a solução da busca fonética para a Língua

Portuguesa. O algoritmo foi escrito na linguagem Pascal e resolve algumas questões

quanto a gramática da Língua Portuguesa, mas falha quando realizado o tratamento

de palavras com “SC” e “Ç”.

23

4 METODOLOGIA

Desde o início do projeto e das pesquisas realizadas, o principal objetivo foi a

obtenção de materiais com informações importantes sobre o assunto, para garantir

mais confiabilidade aos resultados mostrados, pois o tema proposto reflete

diretamente nas funções já criadas para solução do problema.

O projeto foi realizado em etapas , que serão apresentadas de forma

organizada para que todo o raciocínio feito seja entendido com mais clareza.

1-Levantamento Bibliográfico: Estudo criterioso sobre o assunto, para que

fosse possível um levantamento de informações que se tornou base para a criação

de uma nova estratégia e desenvolvimento de um novo sistema abrangendo a busca

fonética para a Língua Portuguesa.

2-Diferenciação da Língua Inglesa para a Língua Portuguesa e

entendimento das principais dificuldades que o Português pode trazer para a

implementação: Para entender as funções fonéticas já existentes, há necessidade

de um entendimento da Língua Inglesa, e para que seja implementado na Língua

Portuguesa, devem-se entender as principais dificuldades que as regras gramaticais

podem trazer. Após o estudo sobre os fonemas consonantais e vocálicos e

conhecimento mais abrangente sobre fonética da Língua Portuguesa, novas

soluções e estratégias poderão ser desenvolvidas.

3-Entendimento dos principais algoritmos já existentes para busca

fonética: Estudo realizado sobre as estratégias já existentes serve como base

importante para mostrar as eficiências e ineficiências dos algoritmos. A partir deste

24

estudo, é possível obter informações e resultados das análises de cada função.

Assim uma melhor visão do que precisa ser incluído para que a solução seja mais

completa poderá ser obtida.

4-Verificar a existência de soluções para os gerenciadores de bancos de

dados Firebird, MySQL e PostGreeSQL em termos de busca fonética, inclusive

busca fonética para o Português: Inicialmente, o principal objetivo do projeto, foi a

identificação de trabalhos que realizam esta função para os bancos de dados

MYSQL, Postgree e Firebird. Em constantes pesquisas e conversas com

gerenciadores de banco de dados, obteve-se a certeza de que não existem

implementações para o MYSQL e Postgree, apenas os já citados algoritmos

Soundex, Metaphone e Double Metaphone. Para o Firebird, foi encontrada uma UDF

publicação que realiza a função fonética. A partir dessa função, será realizada o

aperfeiçoamento melhoria de acordo com as regras gramaticais da Língua

Portuguesa.

5-Implementação do algoritmo BuscaSonora para pelo menos um dos

SGBD citados no trabalho: Realizadas implementações para cada SGBD citado no

projeto, foi possível a obtenção de resultados de palavras tanto em Inglês quanto em

Português. Este processo foi importante devido ao estudo realizado dos algoritmos,

sendo possível analisar com detalhes as estratégias e soluções que cada função

exerce.

25

5 ESTUDO DOS ALGORITMOS DE BUSCA FONÉTICA EXISTENTES
EM SGBD LIVRES

Este capítulo apresenta os testes efetuados sobre os algoritmos de busca

fonética descritos neste trabalho. O intuito é verificar a eficácia de tais algoritmos

para a Língua Portuguesa.

Também foram realizados inúmeros testes com soluções publicadas

específicamente para o idioma português. O objetivo de tais testes é comprovar a

eficiência dos algoritmos para todas as variações fonéticas existentes na Língua

Portuguesa.

Ao final do capítulo, encontra-se a sugestão de um possível algoritmo para

efetuar a busca fonética em Sistemas Gerenciadores de Banco de Dados (SGBD)

open-source, considerando as regras gramaticais e fonéticas do idioma português.

5.1 Busca fonética em SGBD livres.

Esta parte do trabalho visa investigar se alguns dos SGBD livres, como

Firebird, MySQL e PostGreSQL, possuem soluções para busca fonética, e se estas

soluções estão adequadas ao idioma português. Os ambientes preparados para

execução dos testes estão relatados no Apêndice A deste trabalho.

5.1.1 MYSQL

O sistema gerenciador de banco de dados (SGBD) MySQL, possui

nativamente o algoritmo Soundex, que por sua vez, pode ser consultado no manual

disponibilizado pelo site do MySQL.

Os comandos para execução e obtenção de resultados utilizando a estratégia

Soundex,podem ser executados de acordo com o Quadro 8.

26

Quadro 8 – Exemplos de utilização do Soundex no SGBD MySQL

COMANDO SQL RESULTADO
SELECT SOUNDEX('Hello');

'H400'

SELECT SOUNDEX('Quadratically');

'Q36324'

Fonte: THORN, 2011.

Atualmente, o MySQL possui apenas o Soundex implementado diretamente

em sua instalação, não sendo possível utilizar algoritmos como Metaphone ou

Double Metaphone.

5.1.2 POSTGRESQL

 O SGBD PostgreSQL possui três possibilidades de utilização da busca

fonética em sua própria instalação, ou seja, é implementado diretamente no banco

de dados e disponibilizado gratuitamente em suas versões. Após estabelecer um

estudo sobre a documentação disponibilizada no site do PostgreSQL, verifica-se que

esse gerenciador de banco de dados contém as seguintes funções:

• Soundex

• Metaphone

• Double Metaphone

Para utilização de cada uma das funções mencionadas acima, o processo de

geração da SQL é simples. O Quadro 9 disponibiliza o comando para execução do

processo.

Quadro 9 – Exemplos de utilização do Soundex, Metaphone e Double Metaphone no
SGBD PostGreSQL.

FUNÇÃO COMANDO RESULTADO

Soundex Select soundex(‘ANNE’) A500

Metaphone Select metaphone

(‘GUMBO’, 4)

KM

Double Metaphone Select dmetaphone

(‘GUMBO’)

KMP

Fonte: POSTGRESQL, 2011.

27

5.1.3 FIREBIRD

 Tendo em vista os algoritmos Soundex, Metaphone, Double Metaphone, que

são disponibilizados nativamente tanto no MySQL quanto no PostgreSQL, segundo

(GOMEZ, 2005) o Firebird não contempla nenhuma mecanismo de busca fonética

internamente em sua instalação, mas permite implementações de funções definidas

pelo usuários, ou seja, as UDF, agregando portanto, funções aos bancos de dados

em questão.

5.2 Aplicação dos Algoritmos de Busca Fonética já Existentes para a Língua

Portuguesa

5.2.1 Soundex

Foram realizados alguns testes para comprovar ou não funcionamento do

algoritmo Soundex para a Língua Portuguesa,

Quando realizada uma consulta Soundex para as palavras Casa e Caju, de

acordo com o algoritmo proposto, será obtido o mesmo resultado, ou seja, palavras

com fonéticas totalmente distintas terão resultados semelhantes, ou seja, cadeia de

caracteres igual a C200.

Quadro 10 – Rastreio da palavra Casa e Caju no algoritmo Soundex
Palavra 1 Palavra 2 Resultado Soundex Resultado do

estudo
Casa Caju C200 Não é válido

Fonte: Elaborada pelo autor.

Pensando em nomes próprios, o algoritmo falha nas situações em que se

digitam Walter ou Valter, pois são obtidos resultados diferentes, ou seja, para

palavras com a mesma fonética, foram atribuídas cadeias de caracteres distintas,

como W436 para Walter e V436 para Valter.

Quadro 11 – Exemplo da palavra Walter e Valter no algoritmo Soundex
Palavra 1 Palavra 2 Resultado

Soundex 1

Resultado

Soundex 2

Resultado do

estudo

Walter Valter W436 V436 Não é válido

Fonte: Elaborada pelo autor.

28

Segundo Lucena (2007), a substituição de todas as vogais por zero e mais as

letras H, W e Y são estratégias que não funcionarão para a Língua Portuguesa, pois,

a letra C seguida de vogais A/O/U possui som de K, enquanto que as seguidas de

E/I têm som de Ç. Segundo Bublitz (2006), é possível ignorar as vogais e fazer o

tratamento das consoantes que as antecedem, ou seja, além da letra C seguida de

vogais E/I terem som de Ç, também podem ter fonética parecida com a letra S, de

acordo com a Listagem de Código Fonte 5 mostrada na implementação da busca

fonética no Firebird.

Lucena (2007) comparou também a não distribuição de números para as

correspondentes letras, pois, a Língua Portuguesa contém 31 fonemas, havendo um

tratamento mais específico para as letras e não a simples atribuição de números

(UOL, 2011).

5.2.2 METAPHONE

 A partir da explicação detalhada do que o algoritmo realiza para a geração da

cadeia de caracteres fonética (Capítulo 2.4), é possível a realização de testes para

comprovar o funcionamento. Foram escolhidas palavras que, de acordo com sua

escrita, serão inseridas nas regras descritas na Listagem de Código Fonte 2.

Quadro 12 – Exemplo da palavra Numbers sendo tratada no Metaphone
Palavra Passo Resultado
Numeros 1- Manter letra N NUMEROS
Numeros 2 – Retirar vogal se não estiver no início NMRS
Numeros 4 – M recebe M, R recebe R e S recebe S não

em X, pelo fato de não estar seguido de IA, IO,
TH.

NMRS

Fonte: Elaborada pelo autor.

Quadro 13 – Exemplo da palavra Knowledge sendo tratada no Metaphone

Palavra Passo Resultado
Conhecimento 1- A letra C se transforma em K KONHECIMENTO
Conhecimento 2 – Retirar vogais KNHCMNT
Conhecimento 3 – Letra C se transforma em S pois estava

seguido pela letra I.
KNHSMNT

Fonte: Elaborada pelo autor.

29

Segundo Hjort et al (2009), surgiram outros algoritmos de busca fonética para

tentativa de solução mediante as falhas do Soundex, por exemplo o algoritmo

NYSIIS, que foi desenvolvido pela divisão Estadual de Serviços de Justiça Criminal

de Nova Iorque em 1970 e que será explicado no capitulo 2.6.

 Ao se realizar o estudo sobre o Metaphone em palavras da Língua

Portuguesa, chega-se à conclusão de que a estratégia não pode ser usada mediante

a ortografia e as variedades da Língua Portuguesa. De acordo com estudos de

nomes próprios, a função falhará em testes realizados com o nome “Shirlei” e

“Xirlei”, havendo resultados diferentes para nomes com fonemas iguais.

 Quadro 14 – Exemplo dos nomes Xirlei e Shirlei sendo tratados no Metaphon

Palavra 1 Palavra 2 Resultado

Metaphone Xirlei

Resultado

Metaphone Shirlei

Resultado do

estudo

Xirlei Shirlei SRL XRL Não é válido

.Fonte: Elaborada pelo autor.

 O código também se restringe a variações que a Língua Portuguesa

proporciona, sendo mais um motivo para a não utilização dele em mercados

brasileiros. É possível citar como exemplo o nome “Fatima” ou “Fathima”, um nome

com variações e que a função Metaphone resulta em resultados fonéticos diferentes.

Quadro 15 – Exemplo dos nomes Fatima e Fathima sendo tratada no Metaphone.

Palavra 1 Palavra 2 Resultado

Metaphone Fatima

Resultado

Metaphone Fathima

Resultado do

estudo

Fatima Fathima FTM F0M Não é válido

Fonte: Elaborada pelo autor.

 A inclusão do número 0 ao resultado (F0M) do nome “Fathima” deve-se ao

fato de o algoritmo incluir 0 quando a letra T for seguida da letra H, ou seja, TH.

Sempre que houver essa situação, será incluído o número 0. Portanto, em nomes

como “Thiago” e “Tiago”, sempre ocorrerão problemas.

5.3 Soluções alternativas para busca fonética no idioma português em SGBD
livres

Esta seção apresenta algumas soluções para utilização de busca fonética no

idioma português encontradas em publicações e na literatura. O objetivo aqui é

30

verificar se tais soluções são realmente válidas para a Língua Portuguesa e

apresentar como tais soluções funcionam. A seguir, é mostrado como os testes

foram realizados e a análise realizada sobre os resultados alcançados.

5.3.1 SOLUÇÃO 1

 O Firebird não possui nativamente nenhum dos algoritmos de busca fonética

tratados neste trabalho, porém a implementação da busca fonética, com suporte ao

idioma português, já foi realizada e publicada por Jorge Luis Bublitz, publicada na

revista Clube Delphi, 82, em 2006 (BUBLITZ, 2006). Esse trabalho considera tal

publicação como uma solução de busca fonética para o SGBD Firebird.

O código de implementação do algoritmo foi desenvolvido em linguagem

Delphi, baseado no algoritmo Metaphone. Ele realiza a conversão de uma palavra

interpretada como sendo o nome em outra palavra equivalente, porém livre de

caracteres que possam gerar duplicidades fonéticas de acordo com o alfabeto e

regras ortográficas da Língua Portuguesa. As regras utilizadas são apresentadas na

Listagem de Código Fonte 5.

Procedimento da Busca Fonética para Língua Portuguesa no Firebird
Inicio

1) Vogais(A, E, I, O, U), Y e o H são ignorados
2) E, DA, DAS, DE, DI, DO e DOS são ignorados
3) Havendo letras duplicadas a segunda letra é ignorada
4) Manter Consoantes B, D, F, J, K, L, M, N, R, T, V e X
5) Letra C Seguida de H tem som de X, seguida de A, O ou U tem
som de K, seguida de E ou I tem som de S, senão é ignorado
6) Letra G Seguida de E tem som de J
7) Letra G Seguida de H tem som de F
8) Letra Q Seguida de U tem som de K
9) Letra S Seguida de H tem som de X, entre duas vogais tem
som de Z Seguido de vogal é mantido, senão é ignorado
10) Letra W Tem som de V
11) Letra Z No final do nome tem som de S, senão é mantida

Fim
Listagem de Código-Fonte 5: Procedimento da busca fonética para o Firebird
Fonte: BUBLITZ, 2006.

O programa escrito pelo autor gera um arquivo de extensão DLL, que pode

ser utilizada como uma UDF no Firebird. A DLL deve estar na pasta do Firebird, na

31

sub-pasta UDF e em seguida deve ser registrada no SGBD, através do comando

mostrado na Listagem de Código Fonte 7.

A primeira solução encontrada foi publicada na revista Clube Delphi, 2006,

Código Fonético no Firebird, por Jorge Luíz Bublitz.

Para o teste, foi criado um banco de dados contendo uma tabela, cujo nome é

CLIENTE, que armazena os campos NOME e CAMPO_FONETICO. O código SQL

para criação do banco de dados e para a criação da tabela CLIENTE pode ser visto

na Listagem de Código Fonte 6.

CREATE TABLE CLIENTE (
NOME VARCHAR(50) NOT NULL,
CAMPO_FONETICO VARCHAR(50)
);

Listagem de Código-Fonte 6: SQL para criação do banco de dados e criação da tabela
CLIENTE
Fonte: Elaborada pelo autor.

O campo NOME foi criado para receber o nome de um cliente, considerando

uma aplicação qualquer. O campo CAMPO_FONETICO armazenará a codificação

fonética da palavra considerada como nome, conforme apresentado.

DECLARE EXTERNAL FUNCTION FCCODIFONPT_BR

CSTRING(255) NULL

RETURNS CSTRING(255)

ENTRY_POINT 'CodiFonPT_BR' MODULE_NAME 'codfon';

Listagem de Código-Fonte 7: SQL para vinculo da UDF no software IBexpert.
Fonte: Elaborada pelo autor.

Após o conhecimento das regras mostradas para a busca fonética no Firebird

de acordo com a Listagem de Código Fonte 5, são efetuados testes para verificar a

eficiência da solução. A estratégia aqui é criar um gatilho que vai atuar atualizando o

campo “CAMPO_FONETICO”, com a cadeia de caracteres fonética gerada pelo

algoritmo proposto, de acordo com as palavras inseridas na tabela CLIENTE, no

campo “NOME”.

Na Listagem de Código Fonte 8 é apresentado o script de criação do gatilho e

na Listagem de Código Fonte 9 é mostrado o script de inserção na tabela CLIENTE

com palavras que podem ser escritas de maneiras diferentes na Língua Portuguesa.

32

CREATE OR ALTER TRIGGER FONETICO_BI0 FOR CLIENTE
ACTIVE BEFORE INSERT OR UPDATE POSITION 0
AS
begin

new.campo_fonetico = fccodifonpt_br(new.nome);
end

Listagem de Código-Fonte 8: SQL para criação do gatilho (trigger)
Fonte: Elaborada pelo autor.

INSERT INTO CLIENTE (NOME) VALUES ('JUSSARA’);

INSERT INTO CLIENTE (NOME) VALUES ('JUSARA');

INSERT INTO CLIENTE (NOME) VALUES ('JUÇARA');

INSERT INTO CLIENTE (NOME) VALUES ('LUIS');

INSERT INTO CLIENTE (NOME) VALUES ('LUIZ');

INSERT INTO CLIENTE (NOME) VALUES ('WAGNER');

INSERT INTO CLIENTE (NOME) VALUES ('VAGNER');

INSERT INTO CLIENTE (NOME) VALUES ('CARLA');

INSERT INTO CLIENTE (NOME) VALUES ('KARLA');

INSERT INTO CLIENTE (NOME) VALUES ('CHICO');

INSERT INTO CLIENTE (NOME) VALUES ('FATIMA');

INSERT INTO CLIENTE (NOME) VALUES ('FATHIMA');

INSERT INTO CLIENTE (NOME) VALUES ('FELIPE');

INSERT INTO CLIENTE (NOME) VALUES ('PHELIPE');

INSERT INTO CLIENTE (NOME) VALUES ('TIAGO');

INSERT INTO CLIENTE (NOME) VALUES ('THIAGO');

INSERT INTO CLIENTE (NOME) VALUES ('ACELINO');

INSERT INTO CLIENTE (NOME) VALUES ('ASSELINO');

INSERT INTO CLIENTE (NOME) VALUES ('ASCELINO');

Listagem de Código-Fonte 9: SQL para inserção dos dados na tabela Cliente
Fonte: Elaborada pelo autor.

Quadro 16 – Dados inseridos após a execução do insert de acordo com a listagem
de Código Fonte 8.
NOME CAMPO_FONETICO

JUSSARA JZR

JUSARA JZR

JUÇARA JKR

WAGNER VGN

VAGNER VGN

CARLA KRL

KARLA KRL

CHICO XK

33

FATIMA FTM

FATHIMA FTM

FELIPE FLP

PHELIPE FLP

ACELINO SLN

ASSELINO ZLN

ASCELINO SSLN

Fonte: Elaborada pelo autor.

 Após tudo configurado e todos os comandos executados, é possível realizar

consultas e ver se os resultados correspondem ao esperado. Para realização das

consultas, deve-se vincular o comando criado para utilizar a função fonética. A

seguir, o exemplo da SQL para o nome Karla:

SELECT * FROM CLIENTE C

WHERE c.campo_fonetico = fccodifonpt_br('KARLA')

Listagem de Código-Fonte 10: SQL com seleção para o nome Karla
Fonte: Elaborada pelo autor.

O resultado obtido após a execução do comando de seleção é apresentado no

Quadro 17. É possível perceber que ambas as palavras “Carla” e “Karla” foram

retornadas, como esperado, por terem a mesma pronúncia.

Quadro 17 – Resultado fonético para os nomes Karla e Carla
NOME CAMPO_FONETICO

CARLA KRL

KARLA KRL

Fonte: Elaborada pelo autor.

 Foram realizados outros comandos para constatar o funcionamento da busca

fonética no Firebird. Para os nomes Wagner (Listagem de Código Fonte 11) e

Fatima (Listagem de Código Fonte 12), houve um resultado satisfatório, pois o

objetivo foi alcançado e o retorno da busca contemplou as estratégias que a função

realiza.

SELECT * FROM CLIENTE C
WHERE c.campo_fonetico = fccodifonpt_br('WAGNER')

Listagem de Código-Fonte 11: SQL com seleção para o nome Wagner
Fonte: Elaborada pelo autor.

34

Quadro 18 – Resultado fonético para os nomes Wagner e Vagner
NOME CAMPO_FONETICO
WAGNER VGN

VAGNER VGN

Fonte: Elaborada pelo autor.

SELECT * FROM CLIENTE C
WHERE c.campo_fonetico = fccodifonpt_br('FATIMA')

Listagem de Código-Fonte 12: SQL com seleção para o nome Fatima
Fonte: Elaborada pelo autor.

Quadro 19 – Resultado fonético para os nomes Fatima e Fathima
NOME CAMPO_FONETICO
FATIMA FTM

FATHIMA FTM

Fonte: Elaborada pelo autor.

Contudo, como a Língua Portuguesa contém inúmeras variações e formas de

se criar um nome e interpretar palavras do dicionário, foram observados, após os

testes, a não utilização e o não tratamento de algumas regras que devem facilitar a

busca nos SGBD.

Com o cadastro desses três novos clientes – Acelino, Ascelino e Asselino –,

os resultados foram três campos fonéticos distintos: SLN, ZLN e SSLN (Quadro 16),

ou seja, não é possível utilizar o algoritmo para esta situação.

Abaixo, a constatação com a busca pelo nome Acelino, conforme Listagem de

Código-Fonte 12, e o retorno de apenas um cadastro, de acordo com o Quadro 20,

ocorrendo ineficiência. Para obter o resultado completo, a busca teria que

contemplar os nomes Acelino, Ascelino e Asselino, de acordo com o Quadro 21.

SELECT * FROM CLIENTE C

WHERE c.campo_fonetico = fccodifonpt_br('ACELINO')

Listagem de Código-Fonte 13: SQL com seleção para o nome Acelino.
Fonte: Elaborado pelo autor.

Quadro 20 – Resultado fonético para o nome Acelino
NOME CAMPO_FONETICO

ACELINO SLN

Fonte: Elaborada pelo autor.

35

Quadro 21 – Demonstração de resultado para os nomes Acelino, Asselino e Ascelino
NOME

ACELINO

ASSELINO

ASCELINO

Fonte: Elaborada pelo autor.

O algoritmo falha também em situações em que a fonética do nome é a

mesma, enquanto a forma de escrita é diferente. Os testes realizados abrangeram

diversas possibilidades de nomes, dentre os quais é possível citar os nomes “Niltom”

e “Nilton”. Quando executado o algoritmo descrito na revista Clube Delphi, 82, em

2006 (BUBLITZ, 2006), o retorno da busca fonética realizada será:

SELECT * FROM CLIENTE C

WHERE c.campo_fonetico = fccodifonpt_br('NILTOM')

Listagem de Código-Fonte 14: SQL com seleção para o nome Niltom
Fonte: Elaborada pelo autor.

SELECT * FROM CLIENTE C
WHERE c.campo_fonetico = fccodifonpt_br('NILTON')
Listagem de Código-Fonte 15: SQL com seleção para o nome Nilton.
Fonte: Elaborado pelo autor.

Quadro 22 – Resultado fonético para o nome Niltom
NOME CAMPO_FONETICO

NILTOM NLTM

Fonte: Elaborada pelo autor.

Quadro 23 – Resultado fonético para o nome Nilton
NOME CAMPO_FONETICO

NILTON NLTN

Fonte: Elaborada pelo autor.

O algoritmo contém falhas quando realizados testes e estudos da letra G,

tendo em vista que Bublitz (2006) já realiza um tratamento no código original quando

a letra G for acompanhada da letra E. Porém, em situações em que a letra G é

acompanhada da letra I, a função não retorna um valor válido, ou seja,

considerando-se os nomes “Gisele” e “Jisele”, o retorno será códigos fonéticos

distintos.

36

SELECT * FROM CLIENTE C

WHERE c.campo_fonetico = fccodifonpt_br('GISELE')

Listagem de Código-Fonte 16: SQL com seleção para o nome Gisele
Fonte: Elaborada pelo autor.

SELECT * FROM CLIENTE C
WHERE c.campo_fonetico = fccodifonpt_br('JISELE')
Listagem de Código-Fonte 17: SQL com seleção para o nome Jisele
Fonte: Elaborada pelo autor.

Quadro 24 – Resultado fonético para o nome Niltom
NOME CAMPO_FONETICO

GISELE GSL

Fonte: Elaborado pelo autor.

Quadro 25 – Resultado fonético para o nome Nilton
NOME CAMPO_FONETICO

JISELE JSL

Fonte: Elaborado pelo autor.

Quando o estudo parte para a letra W, o sistema trata apenas se estiver a

letra W, transformando em V, como por exemplo, nos nomes Walter e Valter. Mas é

possível ter exemplos em que, no início da palavra, o W tem som de U, como nos

nomes Walace e Ualace.

SELECT * FROM CLIENTE C

WHERE c.campo_fonetico = fccodifonpt_br('UALACE')

Listagem de Código-Fonte 18: SQL com seleção para o nome Ualace
Fonte: Elaborada pelo autor.

SELECT * FROM CLIENTE C
WHERE c.campo_fonetico = fccodifonpt_br('WALACE')
Listagem de Código-Fonte 19: SQL com seleção para o nome Walace
Fonte: Elaborada pelo autor.

Quadro 26 – Resultado fonético para o nome Niltom
NOME CAMPO_FONETICO
UALACE LC
Fonte: Elaborada pelo autor.

Quadro 27 – Resultado fonético para o nome Nilton
NOME CAMPO_FONETICO

WALACE WLC

Fonte: Elaborada pelo autor.

37

A partir dos testes realizados, chegou-se à conclusão deque o algoritmo

publicado na revista Clube Delphi não é totalmente completo, porque falhou para

várias das regras ortográficas do idioma português.

O algoritmo deve ser reavaliado para correção do problema aqui apontado e,

a partir de então, vincular novamente a função a um novo banco de dados para

novos testes e verificação se o que foi corrigido será satisfatório ou não.

5.3.2 SOLUÇÃO 2

Em 2005 foi realizado também um novo estudo sobre a busca fonética no

Firebird, baseado no algoritmo Soundex, ou seja, seguindo o Quadro 28. A

publicação do estudo foi realizado na revista DBFree Magazine, Volume 6, por Flavio

Yamil Gomez.

Quadro 28 – Estratégia do algoritmo Soundex para busca fonética

Fonte: Gomes, 2005.

Segundo Gomes (2005), a UDF foi implementada por meio de 4 funções

(MV_soundex, soundex, SoundexPalavra e GrupoSoundex). Em ordem, a função

MV_soundex é a função principal e chama a função Soundex; esta chama a função

SoundexPalavra, que, por sua vez, chama a função GrupoSoundex.

 Segundo Gomes (2005), torna-se necessário o vinculo da DLL MetaUDF na

pasta padrão do Firebird C:\Program Files\Firebird\Firebird_2_5\UDF, para que as

funções e o algoritmo funcionem corretamente.

De acordo com o Quadro 29, o algoritmo realiza as seguintes regras para

geração do resultado final.

38

Quadro 29 – Regras para geração do resultado de acordo com a DLL MetaUDF
Regras

 As vogais são descartadas, com exceção da primeira;

 As consoantes H e Y são descartadas;

 Se duas ou mais consoantes consecutivas equivalem ao mesmo grupo de conversão, a
segunda e restante são descartadas;

 Se a primeira letra da palavra for uma consoante e a segunda pertence ao mesmo grupo de
conversão desta, a segunda é descartada.
Fonte: Gomes, 2005.

Após seguir as regras e vínculos para utilização da DLL MetaUDF, o sistema

falhará em testes simples com nomes cuja pronúncia seja a mesma. O nome Carla,

por exemplo, pode ser descritos como Karla, tendo como diferença as letras iniciais

C e K. Outro exemplo que pode ser usado como referência é o nome Chico, cuja

escrita pode variar, tendo em vista que pode ser escrito como Chico ou Xico

Executando o algoritmo proposto, os resultados obtidos serão distintos,

mostrando valores fonéticos diferentes; portanto, é inviável a utilização desse

algoritmo para a Língua Portuguesa.

select Mv_Soundex('carla') from

rdb$database

Listagem de Código-Fonte 20 – SQL com seleção para o nome Carla
Fonte: Elaborado pelo autor.

select Mv_Soundex('karla') from

rdb$database

Listagem de Código-Fonte 21 – SQL com seleção para o nome Karla
Fonte: Elaborado pelo autor.

Quadro 30 – Resultado fonético para o nome Carla
NOME CAMPO_FONETICO

CARLA C640

Fonte: Elaborado pelo autor.

Quadro 31 – Resultado fonético para o nome Karla
NOME CAMPO_FONETICO

KARLA K640

Fonte: Elaborado pelo autor.

39

select Mv_Soundex('chico') from

rdb$database

Listagem de Código-Fonte 22 – SQL com seleção para o nome Chico
Fonte: Elaborada pelo autor.

select Mv_Soundex('xico') from

rdb$database

Listagem de Código-Fonte 23 – SQL com seleção para o nome Xico
Fonte: Elaborada pelo autor.

Quadro 32 – Resultado fonético para o nome Chico
NOME CAMPO_FONETICO

Chico C200

Fonte: Elaborada pelo autor.

Quadro 33 – Resultado fonético para o nome Xico
NOME CAMPO_FONETICO

Xico X200

Fonte: Elaborado pelo autor.

É possível perceber que a variação numérica do campo fonético é calculada

corretamente de acordo com as premisses do Soundex, porém, para a Língua

Portuguesa, manter a primeira letra para uma analise fonética não é uma estratégia

confiável, pois ocorrerão os problemas informados.

6 BUSCASONORA: PROPOSTA DE SOLUÇÃO PARA A BUSCA FONETICA NA
LÍNGUA PORTUGUESA

Para desenvolver um algoritmo que possa abranger todas as regras

gramaticais ou conseguir pelo menos um resultado mais favorável quanto à busca

fonética na Língua Portuguesa, o estudo teve que ser minucioso, tendo em vista que

as possibilidades para a criação de nomes são extensas.

Todos os algoritmos analisados apresentaram diversos problemas, que já

foram relatados anteriormente, o algoritmo que se mostrou mais próximo de uma

solução ideal, foi publicado na revista Clube Delphi, 82, em 2006 (BUBLITZ, 2006).

Portando, esta solução foi escolhida para as correções e novas implementações

para uma busca fonética mais completa no idioma Português.

40

Inicialmente concentrou-se em ajustar problemas encontrados no algoritmo

publicado fazendo novas implementações. Analisando o código fonte original, as

mudanças que ocorreram para melhoria da função, foram referente às regras

fonéticas, ou seja, às analises que o código faz para encontrar o fonema

correspondente a letra.

Pode-se descrever o processo de desenvolvimento em três fases. A primeira

fase é a criação da PL/SQL baseado no algoritmo original com as correções simples

para as falhas encontradas no mesmo. A PL/SQL são blocos que aceitam

parâmetros de entrada e saída, retornam resultados e são instruções compiladas em

um único plano de execução, ou seja, são procedimentos programados no banco de

dados, tendo em vista que a PL/SQL é uma extensão a linguagem SQL (GOYA,

2011).

A justificativa para a implementação em PL/SQL é para o funcionamento em

diversos SGBD, principalmente, Firebird, MySQL e PostgreSQL, tendo em vista que

a PL/SQL é uma extensão da SQL. Apesar de haver diferenças de escrita de

comandos nas Storeds Procedures de um SGBD para o outro, a adequação é

perfeitamente possível, bastando trocar comandos que são específicos de um SGBD

por outro equivalente.

Outro fato que influenciou o desenvolvimento em PL/SQL são questões de

Sistemas Operacionais. O código publicado por (BUBLITZ, 2006) explica a criação

de uma DLL, porém arquivos com esta extensão não funcionaria em outros sistemas

operacionais, como por exemplo, no Linux. Havendo um problema para futuras

implementações, pois no Linux são utilizados arquivo com extensão “.SO”.

Na segunda fase, foi realizado um extenso estudo dos fonemas “S”, “X” e “Z”

que são os mais complicados de tratar, pois possuem muitas formas de escrita

diferentes. Para este caso desenvolve-se um novo algoritmo que é explicado mais a

frente no trabalho.

Na terceira fase, foi desenvolvido um sistema de cadastro e consulta ao

banco de dados, para comprovação do funcionamento do algoritmo e também para

que seja possível a visualização na prática do que foi elaborado durante o projeto. O

sistema foi desenvolvido em Object Pascal, utilizando-se o ambiente de

desenvolvimento Delphi, um dos ambientes de desenvolvimento mais usados no

mundo (EVARISTO, 2004).

41

6.1 PRIMEIRA FASE – CORREÇÃO DE FALHAS DO ALGORITMO

Tendo em vista que Bublitz (2006) preocupou-se em resolver questões quanto

ao fonema da letra Z e S no final da palavra, como nos nomes Luiz e Luis, deve-se

tratar também as letras N e M, como nos nomes Nilton e Niltom. Portanto, foi

incluída o seguinte trecho de código, de acordo com a Listagem de Código-Fonte 24,

para resolver este problema.

'N':

 if (i = Length(aux)) or (aux[i+1] = ' ') then

 novo := novo + 'M'

 else

 novo := novo + 'N';

Listagem de Código-Fonte 24 – Algoritmo incluído para tratamento da letra N e M no final da
palavra.
Fonte: Elaborada pelo autor.

Essa parte de código determina que, se no final da palavra ou depois do

nome houver um espaço vazio, por exemplo, Nilton Silva, e a última letra for N, o

sistema entenderá como a letra M. Em contrapartida, se a última letra for M, será

mantida a letra M como campo fonético. Há, portanto, um embasamento lógico para

que o sistema encontre nomes com escrita diferente, porém com a fonética igual.

Quando executado o código fonte original, é possível perceber falhas ao se

realizarem buscas com os nomes Luiz e Luis. O sistema retorna dois campos

fonéticos distintos, gerando, portanto, um problema para ser solucionado.

Inicialmente, Bublitz (2006) criou a seguinte função, de acordo com a Listagem de

Código-Fonte 25:

'Z':

 if (i = Length(aux)) or (aux[i+1] = ' ') then

 novo := novo + 'S'

 else

 novo := novo + 'Z';

Listagem de Código-Fonte 25 – Função criada para tratar a letra Z no final da palavra
Fonte: BUBLITZ, 2006.

42

Para correção do problema, foi necessária a inclusão de um tratamento na

letra S, tratamento pelo qual realiza a verificação se a letra “S” está também no final

da palavra, caso esteja, mantêm a letra “S”, resolvendo o problema e mantendo

similaridade fonética nas buscas..

Else

 if (i = Length(aux)) or (aux[i+1] = ' ') then

 novo := novo + 'S' ;

Listagem de Código-Fonte 26 – Algoritmo incluído para tratamento da letra S no final da
palavra
Fonte: Elaborada pelo autor.

A criação dessa nova função foi gerada após testes em que o sistema estava

gerando resultados distintos, onde o tratamento para o S no final da palavra não

havia sido incluído no algoritmo.

Quadro 34 – Resultado de busca com o nome Luiz no algoritmo de BUBLITZ, 2006
NOME CAMPO_FONETICO

LUIZ LS

Fonte: Elaborada pelo autor.

Quadro 35 – Resultado de busca com o nome Luis no algoritmo de BUBLITZ, 2006
NOME CAMPO_FONETICO

LUIS L

Fonte: Elaborada pelo autor.

O código de Bublitz (2006) falha também é realizada busca da letra G, pois

somente é tratada a vogal E depois da consoante G, tendo em vista que pode haver

ter similaridade fonética quando, após a consoante G, houver a vogal I. É possível

citar como exemplo os nomes Gisele ou Jisele.

Else

 if aux[i + 1] = 'I' then

 novo := novo + 'J'

 else

 novo := novo + 'G';

Listagem de Código-Fonte 27 – Algoritmo incluído para tratamento da letra I depois da letra G
Fonte: Elaborada pelo autor.

43

Quando o estudo parte para a letra W, o sistema trata apenas se estiver a

letra W transformando em V, como nos nomes Walter e Valter. Mas é possível ter

exemplos em que, no início da palavra, o W tem som de U, ou seja, nos nomes

Walace e Ualace. Foi incluído também um tratamento para vogais antes da letra U

terem som de L, como nos nomes Algusto e Augusto.

 'U':

 if (i = 1) and (aux[i] = 'U') then

 novo := novo + 'W'

 else if aux[i - 1] in ['A','E','I','O','U'] then

 novo := novo + 'L';

Listagem de Código-Fonte 28 – Algoritmo incluído para tratamento das vogais A, E, I, O, U
antes da letra U depois da letra G
Fonte: Elaborada pelo autor.

Foi realizada uma inclusão para o tratamento da letra “X” no final da palavra,

onde há possibilidades de fonética “KS”, ou seja, em nomes como Max ou Maks. A

solução para o problema pode ser realizado com um rastreio na palavra e verificação

se a letra “X” está no final da palavra, caso esteja, acrescenta como fonema as letras

“KS”. Ocorre também possibilidade de fonema parecido quando a letra “C” é

acompanha da letra “S”. De acordo com a Listagem de Código Fonte 29 é descrito

como foi resolvido o problema:

else if (:STR1 = 'X') then

 begin

 if ((:I = char_length(:NOME)) or (:STR2 = ' ')) then

 NOVO = :NOVO || + 'KS';

 else

 NOVO = :NOVO || + 'X';

 End

--

else if (:STR1 = 'S') then

begin

else if (:STRANT = 'C') then

 NOVO = NOVO || 'KS';

End

Listagem de Código-Fonte 29 – Algoritmo incluído para tratamento da letra “X” no final da palavra e a
letra “C” antes da letra S”.

Fonte: Elaborado pelo autor.

44

O algoritmo original descartava a fonética da letra “C” quando era iniciada na

palavra, havendo um tratamento apenas quando a letra “C” era acompanha das

vogais (“A”, “O” ou “U”) incluindo um fonema “K” e quando a letra “C” era acompanha

da letra “H”, atribuindo um fonema “X”. Porém, analisando as possibilidades de

criação de nomes, ocorrem casos em que a letra “C” tem som de “K” sem ser

acompanhada de vogais. É possível citar como exemplo os nomes Claus e Klaus ou

nos nomes Cristiana e Kristiana. Portanto, para solução do problema, foi incluído no

código um tratamento em que se analisa as letras “L” e “R” depois da letra “C”.

Houve uma preocupação também quanto as vogais “E” e “I” depois da letra

“C”, onde em exemplos simples é possível descrever um fonema “S”, havendo

portanto a necessidade de mudança no código para melhorar a busca fonética para

a Língua Portuguesa. Os exemplos são os nomes Cintia e Sintia. A Listagem de

Código Fonte 30 descrevera as estratégias para correções dos problemas descritos:

 else if (:STR1 = 'C') then

 begin

 if (:STR2 = 'H') then

 NOVO = :NOVO || 'X';

 else if (:STR2 in ('A', 'O', 'U')) then

 NOVO = :NOVO || 'K';

 else if (:STRANT = 'X') then

 NOVO = :NOVO || + 'S';

 else if (:STR2 in ('E', 'I')) then

 NOVO = :NOVO || 'S';

 else if (:STR2 in ('R', 'L')) then

 NOVO = :NOVO || 'K';

 End

Listagem de Código-Fonte 30 – Algoritmo incluído para tratamento da letra “C”.

Fonte: Elaborado pelo autor.

45

6.2 SEGUNDA FASE – TRATAMENTO PARA LETRAS S, X E Z

O tratamento para as letras “S”, “X”, e “Z” devem ser realizados e estudados

de forma mais especifica, pois as possibilidades de diferentes formas para se

escrever palavras que contêm essas letras são diversas. Mediante essas variações,

que surgiu a possibilidade de criar soluções diferentes para encontrar um resultado

mais satisfatório no que diz respeito a realidade de pronuncia e escrita existente

atualmente no Brasil.

Quando realizado o estudo dos fonemas existentes, surgiu a oportunidade de

estudar os grafemas, que é definido por (SCLIAR, 2003) como uma ou duas letras

que representam um fonema. Ou seja, nos sistemas de escrita, os fonemas são

representados por grafemas, onde se denomina grafema-fonema (REGINA, 2009).

Na Figura 3 é mostrado um exemplo:

Figura 3: Exemplo de novo fonema para a letra S de acordo com a palavra ‘vez’.

Fonte: GARCIA et all, 2011

Como descrito na Figura 3, o fonema é a letra “S”, porém, o grafema é a

forma com que a palavra é escrita. No inicio do projeto, de acordo com o Quadro 1 –

Fonemas vocálicos e fonemas consonantais, foi descrito os fonemas da Língua

Portuguesa, sua representação e o exemplo para cada tipo de fonema. Após

estudos para criação do algoritmo, foi necessária uma atenção especial para a letra

“S”, pois suas variações são diversas, ou seja, temos diversos grafemas e diversos

fonemas para suas representações. Inicialmente, incluímos 8 grafemas para o

46

estudo da letra “S”, mas segundo (GARCIA et all, 2011) a letra “S” contém 9

fonemas, incluindo a letra “Z” na palavra Vez, por exemplo.

 Mediante as dificuldades para resolver a fonética da letra “S”, encontra-se

exemplos nos quais é possível descrever a palavra “ROÇA”, onde facilmente é

possível realizar uma busca digitando a palavra “ROSA” ou “ROSSA”. Levando em

consideração possibilidades de erros em variações gramaticais ou dificuldades em

escrita. Porém, a palavra “ROSA” (nome próprio) contém a fonética igual à letra “Z”,

havendo um novo problema para a busca fonética. Se o usuário deseja encontrar a

palavra “ROÇA”, não seria necessário mostrar um nome cadastrado como “ROZA”.

Foi realizada a inclusão de novos tratamentos para a letra “S”, a fim de ajustar

o seu fonema para alguns grafemas, que são eles: “XC”, “SC” e “SÇ”. Para solução

do problema, veja a Listagem de Código Fonte 31:

if (:STR1 = 'S') then

else if (:STR2 = 'Ç') then

 NOVO = :NOVO || 'S';

if (:STR1 = 'S') then

else if (:STR2 = 'C') then

 NOVO = NOVO || 'S';

if (:STR1 = 'C') then

else if (:STRANT = 'X') then

 NOVO = :NOVO || + 'S';

Listagem de Código-Fonte 31 – Algoritmo incluído para tratamento para os grafemas da letra “S”.

Fonte: Elaborado pelo autor.

Após analisar o fonema “S”, deve-se atenção especial a letra “Z”, que também

contem variações e possibilidades diferentes tanto para fala quanto para erros em

escrita. Como descrito na Figura 4, o fonema é a letra “Z”, e seus respectivos

grafemas são a própria letra “Z” como na palavra zebra, a letra “S” como na palavra

casamento e na letra “X” de acordo com a palavra exato.

Inicialmente, o algoritmo original tratou a letra “Z” caso estivesse entre as

vogais “A, “E”, “I”, “O”, “U”. Mas se for analisar as possibilidades como um todo, o

tratamento tem que ser mais criterioso, para obtenções de soluções mais próximas e

satisfatórias para o controle de busca.

47

 Figura 4: Grafemas da letra Z.

Fonte: Elaborado pelo Autor.

Conforme descrito no início do capítulo, além das letras “S” e “Z”, os estudos

e pesquisas durante a realização do trabalho, constatou que a letra “X” contém

diversas possibilidades de grafemas, onde é possível concluir que tratamentos

especiais para este fonema foi desenvolvido, afim de soluções eficazes para a busca

fonética na Língua Portuguesa.

De acordo com a Figura 5, é possível visualizar que o fonema “X” contém os

grafemas “Z” de acordo com a palavra exagero, na própria letra “X” e no grafema

“KS” como na palavra toxico.

 Figura 5: Grafemas da letra X.

Fonte: Elaborado pelo Autor.

 A solução sugerida pelo orientador do projeto foi a de buscar todos os

grafemas possíveis para um mesmo fonema levando em consideração que não é

possível definir, através da escrita, qual é o fonema desejado pelo usuário. Ou seja,

se é digitado a palavra “ROSA”, não é possível definir se o usuário está indicando o

nome o fonema do “Z”, obtendo a palavra “ROZA”, ou, o fonema do “S”, obtendo a

palavra “ROSSA” e “ROÇA”.

48

Assim, caso o usuário digite a palavra “ROSA” é necessário retornar todos os

grafemas possíveis para todos os fonemas possíveis. Ou seja, retornaria as

palavras, “ROZA”, “ROSA”, “ROSSA” e “ROÇA”. Porém se o usuário informa a

escrever a palavra “ROZA”, é obvio que não se trata do fonema “S” e sim “Z”, neste

caso, o retorno deveria ser apenas as palavras “ROZA” e “ROSA”.

Caso digite a palavra “EXAME” seria necessário retornar palavras como

“EXAME”, “EKSAME”, “EZAME”. Apesar da palavra “EXAME” não ser um nome

próprio, o sistema abre precedentes para buscas não só de nomes, mas também de

qualquer palavra em um texto, havendo possibilidade de ser usado em um editor de

textos, onde não seria necessariamente obrigatório digitar a palavra como ela está

no texto.

Para desenvolver esta solução, o orientador do projeto propôs um algoritmo

que realiza trocas nas letras S, Z e X, da string fonética, por caracteres especiais e

depois substitui todos estes caracteres por todas as possibilidades de grafemas para

os possíveis fonemas da escrita, gerando diversos novos códigos fonéticos que

serão usados para efetuar as consultas no banco de dados. Abaixo segue um

exemplo do algoritmo.

Os caracteres especiais escolhidos para substituição dos possíveis grafemas

são (*, & e $), sendo atribuídos de acordo com o Quadro 36 abaixo:

Quadro 36 – Atribuição de Caracteres especiais para os fonemas X, Z e S.
Caractere Especial Fonema Possíveis Grafemas

* X X, Z e KS

& Z S, Z e X

$ S S e Z

Fonte: Elaborada pelo autor.

Portanto, quando o algoritmo é executado recebendo como parâmetro a

palavra “EXAME”, é gerado todas as possibilidades de fonemas para esta palavra

levando em consideração os grafemas existentes, ou seja, de acordo com o Quadro

37 abaixo, o algoritmo gera como possibilidades os seguintes campos fonéticos

(KSM, ZM, XM).

49

Quadro 37 – Resultados de todos os possíveis grafemas para a palavra EXAME.
Palavra Fonema Resultados Possíveis

EXAME X KSM, ZM e XM

Fonte: Elaborada pelo autor.

O algoritmo que realiza as criações das possibilidades de grafemas para uma

palavra foi desenvolvido no sistema de busca, sendo acoplado a consulta SQL para

melhor filtrar e encontrar o que necessita, mesmo sendo digitado incorretamente a

palavra, havendo um avanço proporcional no que diz respeito a melhoria do

software.

É possível visualizar de acordo com a Listagem de Código Fonte 32, as

funções que o sistema realiza para criação das variações:

function TFConsultaCliente.GrafemasPossiveis(Palavra: string):

TStringList;

var

 ListaPalavras: TStringList;

 ListaPalavrasAux: TStringList;

 PalavraCodFonetico: String;

 I: Integer;

begin

 // Passo 1 - Declaração de variáveis

 ListaPalavras := TStringList.Create;

 ListaPalavrasAux := TStringList.Create;

 // Passo 2 - Passando a palavra para código fonetico

 PalavraCodFonetico := PegaCodigoFonetico(Palavra);

 // Passo 3 - Fazendo substituição de X, Z e S para caracteres

especiais

 PalavraCodFonetico := StringReplace(PalavraCodFonetico, 'KS', '*',

[rfReplaceAll, rfIgnoreCase]);

 PalavraCodFonetico := StringReplace(PalavraCodFonetico, 'X', '*',

[rfReplaceAll, rfIgnoreCase]);

 PalavraCodFonetico := StringReplace(PalavraCodFonetico, 'Z', '&',

50

[rfReplaceAll, rfIgnoreCase]);

 PalavraCodFonetico := StringReplace(PalavraCodFonetico, 'S', '$',

[rfReplaceAll, rfIgnoreCase]);

 // Passo 4 - Substituindo caractere s especiais pelos possíveis

grafemas

 I := 0;

 ListaPalavras.Add(PalavraCodFonetico);

 if (Pos('*', ListaPalavras.Strings[I]) > 0) then

 begin

 ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I],

'*', 'KS', [rfReplaceAll, rfIgnoreCase]));

 ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I],

'*', 'Z', [rfReplaceAll, rfIgnoreCase]));

 ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I],

'*', 'X', [rfReplaceAll, rfIgnoreCase]));

 end;

 if (ListaPalavrasAux.Count > 0) then

 begin

 ListaPalavras.Clear;

 ListaPalavras.AddStrings(ListaPalavrasAux);

 ListaPalavrasAux.Clear;

 end;

 for I := 0 to ListaPalavras.Count -1 do

 begin

 if (Pos('&', ListaPalavras.Strings[I]) > 0) then

 begin

ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I], '&',

'S', [rfReplaceAll, rfIgnoreCase]));

ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I], '&',

'Z', [rfReplaceAll, rfIgnoreCase]));

ListaPalavrasA ux.Add(StringReplace(ListaPalavras.Strings[I], '&',

'X', [rfReplaceAll, rfIgnoreCase]));

51

 end;

 end;

 if (ListaPalavrasAux.Count > 0) then

 begin

 ListaPalavras.Clear;

 ListaPalavras.AddStrings(ListaPalavrasAux);

 ListaPalavrasAux.Clear;

 end;

 for I := 0 to ListaPalavras.Count -1 do

 begin

 if (Pos('$', ListaPalavras.Strings[I]) > 0) then

 begin

ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I], '$',

'S', [rfReplaceAll, rfIgnoreCase]));

ListaPalavrasAux.Add(StringReplace(ListaPalavras.Strings[I], '$',

'Z', [rfReplaceAll, rfIgnoreCase]));

 end;

 end;

 if (ListaPalavrasAux.Count > 0) then

 begin

 ListaPalavras.Clear;

 ListaPalavras.AddStrings(ListaPalavrasAux);

 ListaPalavrasAux.Clear;

 end;

 // Passo 5 - Retornando Possíveis Códigos Fóneticos (de acordo com

os grafemas)

 Result := ListaPalavras;

end;

Listagem de Código-Fonte 32 – Algoritmo que Realiza as Variações de Acordo com os Grafemas das
Palavras.

Fonte: Elaborado pelo autor.

52

O algoritmo que realiza as consultas SQL para palavras que contém letras “S”

ou “Z” foi denominado especial, pois os tratamentos para geração de um resultado

satisfatório são diferenciados das outras palavras que não contém tais variações. É

possível visualizar de acordo com a Listagem de Código Fonte 33 a parte de código

que efetua esta função:

procedure TFConsultaCliente.BuscaFoneticaEspecial;

var

 CodFonetico: TStringList;

 ListaWhere: TStringList;

 ListaCodigosFoneticos: TStringList;

 CondicaoLimiteFonemaZ: string;

 Palavra: string;

 FonemaSouZ: string;

 Operador: String;

 I: Integer;

 function PalavraRegraSouZ(Palavra: string): string;

 var

 I: Integer;

 begin

 Result := '';

 for I := 2 to Pred(Length(Palavra)) do

 begin

 if (Palavra[I] = 'Z') then

 Result := 'Z'

 else if (Palavra[I] = 'S') then

 begin

 if (Palavra[I + 1] <> 'S') and (Palavra[I + 1] <>

'Ç') and (Palavra[I + 1] <> 'C') then

 Result := 'SZ'

 else

 Result := 'S';

 end;

53

 if (Result = 'S') or (Result = 'Z') or (Result = 'SZ') then

 break;

 end;

 end;

begin

 // Declaração de variaveis

 CodFonetico := TStringList.Create;

 ListaWhere := TStringList.Create;

 ListaCodigosFoneticos := TStringList.Create;

 Palavra := UpperCase(Trim(Edit1.Text));

 ListaCodigosFoneticos.AddStrings(GrafemasPossiveis(Edit1.Text));

 FonemaSouZ := PalavraRegraSouZ(Palavra);

 if (FonemaSouZ = 'Z') then

 CondicaoLimiteFonemaZ := ' and (CLIENTE.TEM_S_OU_Z = ''1'')'

 else

 CondicaoLimiteFonemaZ := '';

 //

 for I := 0 to ListaCodigosFoneticos.Count - 1 do

 begin

 if (I=0) then

 Operador := ' where '

 else

 Operador := ' or ';

 if (CondicaoLimiteFonemaZ <> '') and (Pos('S',

ListaCodigosFoneticos[I]) > 0) then

 ListaWhere.Add(Operador + '(CLIENTE.CAMPO_FONETICO = ' +

QuotedStr(ListaCodigosFoneticos[I]) + CondicaoLimiteFonemaZ + ')')

 else

 ListaWhere.A dd(Operador + '(CLIENTE.CAMPO_FONETICO = ' +

QuotedStr(ListaCodigosFoneticos[I]) + ')');

 end;

54

 IBQuery1.SQL.Clear;

 IBQuery1.SQL.Text := 'select ' +

 ' CLIENTE.NOME_CLIENTE, ' +

 ' CLIENTE.CAMPO_FONETICO, ' +

 ' CLIENTE.TEM_S_OU_Z ' +

 'from CLIENTE ';

 for I := 0 to ListaWhere.Count - 1 do

 IBQuery1.SQL.Text := IBQuery1.SQL.Text + ListaWhere[I];

 IBQuery1.SQL.Text := IBQuery1.SQL.Text + 'order by

CLIENTE.NOME_CLIENTE ';

 try

 //ShowMessage(IBQuery1.SQL.Text);

 IBQuery1.Close;

 IBQuery1.Open;

 except

 on E: Exception do

 ShowMessage(E.Message);

 end;

end;

Listagem de Código-Fonte 33 – Algoritmo que Realiza busca fonética especial para palavras que
contém letras S e Z.

Fonte: Elaborado pelo autor.

Uma outra regra necessária, para solução do problema foi a inclusão de um

novo campo na tabela CLIENTE, tabela pela qual foi usada para os testes e

comprovação dos resultados apresentados no trabalho. Este novo campo foi criado

com o nome de “TEM_S_OU_Z”, onde recebe como parâmetro o número 1 ou o

número 0, estes números são padronizados através de um procedimento criado no

banco de dados, chamado “CONTEMSOUZ”.

Esse procedimento visa indicar se a palavra original cadastrada no banco de

dados segue o fonema “Z” ou “S”, que será utilizado para distinguir quando é

necessário realizar as buscas pelo fonema do “Z” ou pelo fonema do “S”. Assim o

valor 1 é gravado quando a palavra corresponde somente ao fonema do “S” e zero

quando a palavra pode ter a possibilidade de fonemas “S” e “Z”.

55

Este campo será utilizado somente quando se tratar de analise de palavras

com “S” e “Z”, quando a palavra não possuir uma dessas letras é gravado zero, mas

o campo não é utilizado para retorno dos valores. É possível visualizar o código do

procedimento criado na Listagem de código Fonte 33 abaixo:

CREATE PROCEDURE CONTEMSOUZ (

 nome varchar(255))

returns (

 temsouz varchar(1))

as

declare variable strant varchar(1);

declare variable aux varchar(1);

declare variable j integer;

declare variable str2 varchar(1);

declare variable tamstring varchar(255);

begin

 J = 2;

 temsouz = '0';

 nome = upper(:nome);

 TamString = (char_length(:NOME) -1);

 while (J <= TamString) do

 begin

 strant = substring (:NOME FROM :J-1 FOR 1);

 STR2 = substring(:NOME from :J + 1 for 1);

 AUX = substring (:NOME FROM :J FOR 1);

 if (:AUX = 'Z') then

 begin

 temsouz = '1';

 break;

 end

 else if (((st rant <> 'S') and (:aux = 'S') and (:str2 <> 'S'))

and ((:aux = 'S') and (:str2 <> 'Ç')) and ((:aux = 'S') and (:str2

<> 'C'))) then

 begin

 temsouz = '1';

 break ;

56

 end

 J = :J + 1;

 end

 suspend;

end

Listagem de Código-Fonte 34 – Procedimento chamado CONTEMSOUZ.

Fonte: Elaborado pelo autor.

Após a criação desta regra, é possível verificar com exemplos a divisão que o

sistema realiza quanto às palavras que contém diversas possibilidades de pronuncia.

Realizando um filtro mais preciso para as consultas no sistema de busca fonética.

Quadro 38: Demonstração do novo parâmetro TEM_S_OU_Z criado.
NOME_CLIENTE CAMPO_FONETICO TEM_S_OU_Z

ROÇA RS 0

ROSA RS 1

ROZA RZ 1

Fonte: Elaborado pelo Autor.

Quanto a análises de palavras que são escritas com a letra “X” ou “Z”, é

possível verificar que o sistema realiza o tratamento corretamente e gerando seus

respectivos campos fonéticos de acordo com os tratamentos explicados durante o

trabalho.

Quadro 39: Atribuição de números 1 ou 0 no parâmetro TEM_S_OU_Z criado.
NOME_CLIENTE CAMPO_FONETICO TEM_S_OU_Z

EZAME ZM 1

EXAME XM 0

TOXICO TXK 0

TOZICO TZK 1

TOKSICO TKSK 1

Fonte: Elaborado pelo Autor.

Neste sentido, o principal é verificar o campo TEM_S_OU_Z, que de acordo

com sua importância para o filtro na consulta SQL, tornou-se um diferencial para a

divisão de palavras que serão encontradas de acordo com o fonema e os possíveis

grafemas, não sendo mostrados resultados incompatíveis.

57

6.3 TERCEIRA FASE – DESENVOLVIMENTO DA INTERFACE

Na terceira fase, o objetivo foi desenvolver um sistema no qual fosse possível

cadastrar e consultar diretamente no banco de dados os nomes de acordo com sua

fonética e não como a palavra é escrita.

O sistema desenvolvido abrange, portanto, uma tela de cadastro, quando este

é executado, automaticamente seu código fonético é calculado e mostrado na tela

para análise (Figura 6).

Figura 6 – Tela para cadastro no sistema de busca fonética
Fonte: Elaborada pelo autor.

O processo de consulta é simples. Apresenta-se uma tela onde o nome terá

que ser preenchido; ao clicar em consultar, os nomes que contêm os

campos_fonéticos iguais serão apresentados de acordo com o que foi pedido na

consulta. Para exemplificar melhor, a Figura 7 mostra com detalhes um processo de

consulta.

58

Figura 7 – Tela para consultar nomes inseridos no sistema de busca fonética
Fonte: Elaborada pelo autor.

59

7 ESTUDO DE CASO

Após realizar uma análise de cenário sobre as funcionalidades do sistema

desenvolvido para consulta através de busca fonética, é possível obtenção de uma

série de nomes que podem ser usados e avaliados quanto ao sucesso que o

algoritmo proposto realiza no que diz respeito a regras para obtenção de um campo

fonético igual para palavras que contem possibilidades de escritas diferentes.

No Quadro 40 é possível visualizar de acordo com a coluna campo_fonético,

que o sistema estipula resultados sucintos e que são compatíveis com as diversas

formas de cadastrar nomes em bancos de dados.

Quadro 40: Lista de nomes cadastros no sistema de busca fonética proposto no
trabalho.
NOME_CLIENTE CAMPO_FONETICO

CARLA KRL

CARLA KRL

CHICO XK

XICO XK

FELIPE FLP

PHELIPE FLP

FATHIMA FTM

FATIMA FTM

CLAUS KLLS

KLAUS KLLS

MAX MKS

MAKS MKS

LUIZ LS

LUIS LS

NILTON NLTM

NILTOM NLTM

CLEUZA KLLZ

CLEUSA KLLS

KELLY KL

QUELI KL

UALACE WLS

WALACE WLS

WALTER WLTR

VALTER WLTR

CRISTIANE KRSTN

KRISTIANE KRSTN

KRYSTIANY KRSTN

CELSO SLS

SELSO SLS

SELMA SLM

CELMA SLM

GISELE JSL

JISELE JSL

GESSICA JSK

JESSICA JSK

60

GESSIKA JSK

JESSICA JSK

MADRIKSANY MDRKSN

MADRICSANI MDRKSN

HEITOR TR

EITOR TR

ALGUSTO LGST

AUGUSTO LGST

KELI KL

ASSELINO SLN

PATRICK PTRK

ASSUNÇÃO SNS

ASUNÇÃO SNS

ASUNSSÃO SNS

CAIC KK

KAIK KK

CAIK KK

CAIQUE KK

Fonte: Elaborado pelo Autor.

Utilizando o processo de cadastro do sistema BuscaSonora, é possível

visualizar que após cadastrar o nome, o campo fonético é preenchido de acordo com

todas as estratégias utilizadas para obtenção do resultado final.

Figura 8 – Visualização de um cadastro no sistema BuscaSonora.

Fonte: Elaborada pelo autor.

61

 E assim que utilizar a consulta disponibilizada no mesmo sistema, é possível

obtençao de resultados satisfatórios para nomes que contem o mesmo som, porém,

com escrita diferente.

Figura 9 – Consulta no sistema BuscaSonora.

Fonte: Elaborada pelo autor.

62

8 CONSIDERAÇÕES FINAIS

Durante a realização desse trabalho foram realizados estudos sobre a

fonética da Língua Portuguesa em contra partida com a fonética da Língua Inglesa,

detalhando suas principais diferenças e focando nas dificuldades das regras

ortográficas do Português.

O trabalho permite observar soluções já existentes para a busca fonética nos

SGBD Firebird, MySQL e PostgreSQL, havendo limitações para o uso na Língua

Portuguesa tanto para soluções nativas aos bancos de dados descritos, tais como

soluções alternativas descritas no trabalho.

O trabalho apontou problemas quanto às regras ortográficas que não foram

tratadas em funções já existentes para a busca fonética, onde iniciou o processo de

desenvolvimento de uma nova solução para a busca fonética mais abrangente. O

sistema de busca fonética criado neste trabalho, pode ser implementado tanto no

Firebird, quanto no MySQL e PostgreSQl.

Os testes realizados com a nova busca fonética, comprovou eficiência em

nomes pelos quais funções já existentes não resolveram o problema, levando em

consideração o tratamento da letra “S”, “X” e “Z”. Porém, a criação de nomes e

novas possibilidades fonéticas é crescente, sendo necessário contínuos estudos

para solução de novos problemas que serão decorrentes dessas criações.

Como sugestão para trabalhos futuros, a criação de procedimentos

(procedures) para os SGBD MySQL e PostGreSQL, pois deve-se levar em

consideração para a transição dos algoritmos propostos para esses bancos de

dados apenas as estruturas e funções que são diferentes para cada SGBD.

63

REFERÊNCIAS BIBLIOGRÁFICAS

BUBLITZ, J. L. Código Fonética no Firebird . Clube Delphi, Ubá, v. 82, 8-11, 2006.

CAGLIARI, Luiz Carlos. Fonética: uma entrevista com Luiz Carlos Cagliari .
Revista Virtual de Estudos da Linguagem - ReVEL. Vol. 4, n. 7, agosto de 2006).

CURSOECOMMERCE. Crescimento do E-Commerce gera oportunidades .
Disponível em: < http://www.cursodeecommerce.com.br/blog/crescimento-
ecommerce/>. Acesso em: 11 jun. 2011.

PEREIRA. Os serviços Online do INPI . Disponível em: <
http://www.oa.pt/upl/%7B637b2194-47de-42fd-9660-b840b930f279%7D.pdf >.
Acesso em: 21 maio. 2011.

DONALD, E. K. The art of computer programming : sorting and searching. Canada:
Addison-Wesley Publishing Company, 1973. Vol 3.

EVARISTO, J. Programando com Pascal . A Linguagem do Turbo Pascal e do
Delphi. Alagoas: Evaristo, 2004. Cap. 1, p. 1-2

FRANTZ, Roni Rui Ruben. J. Recuperação de Informação por similaridade de
fonemas adaptada à Língua Portuguesa . 2009. 124f. Trabalho de Graduação –
Centro Universitário Ritter dos Reis, Porto Alegre, 2009.

GARCIA, Mirian Álvaro Costa,; ARAÚJO, Pâmela Renata Machado; MIRANDA, Ana
Ruth Moresco. Um estudo sobre a grafia do fonema /s/. UFPEL.

GÁLVEZ, Carmen. Identificación de nombres personales por medio de sistemas de
codificacion fonética. Encontros bibli : revista eletrônica de biblioteconomia e ciência
da informação. florianópolis: Vol. 11, nº 22, 2º semestre 2006.

GOMES, F. Y. Busca fonética no Firebird. DBFree Magazine, Ubá, v. 6, 6-9, 2005.

GOYA, M. PL/SQL – Procedure e funções . Disponível em:
<http://www.linhadecodigo.com.br/Artigo.aspx?id=335> Acessado em Nov. de 2011.

64

HELPSAUDE. Help Saude lança busca fonética de remédios . Disponível em:
<http://www.helpsaude.com/Imprensa/Release/BuscadeRemedios>. Acesso em: 11
jun. 2011.

HJORT, Rodrigo; BORTOLETO, Silvio. MetaBusca:a implementação de um
algoritmo fonético no PostgreSQL. Companhia de Informática do Paraná. Curitiba –
PR, 2007.

INPI. INPI de Portugal licencia ao Brasil sistema de busca fonética. Disponível em: <
http://www.inpi.gov.br/noticias/escritorios-brasileiro-e-portugues-criam-bases-de-
dados-de-marcas>. Acesso em: 11 jun. 2011.

JOHN REPICE. Understanding classic Soundex Algorithms . Disponível em: <
http://creativyst.com/Doc/Articles/SoundEx1/SoundEx1.htm >. Acesso em: 21 maio.
2011.

PHILLIPS, Lawrence. The double metaphone search algorithm . Disponível em:
<http://drdobbs.com/184401251?pgno=2> Acessado em nov. de 2011.

POSTGRESQL. PostgreSQL 8.3.16. Documentation . Disponível em: <
http://www.postgresql.org/docs/8.3/static/fuzzystrmatch.html> Acessado em nov. de
2011.

LUCENA, F. J. T. Busca Fonética em Português do Brasil . 2007. 23f.
Trabalho de Graduação – Faculdade de Tecnologia IBRATEC (Instituto Brasileiro de
Tecnologia), UNIBRATEC, Recife, 2007.

OLIVEIRA, Wolney Resende; MAIA, Diulie Fernandes. Nota Fiscal Eletrônica: Pojeto
Nacional e a Iniciativa Municipal De São PAulo – Uma Análise Comparativa .
Universidade de Brasília. Brasília – DF, 2007.

REGINA, R. L. Consciência dos sons da língua : subsídios teóricos e práticos para
alfabetizadores, fonoaudiólogos e professores da Língua Inglesa. Brasil: EDIPUCRS,
2009.

ROSSETTO, F. J. Protótipo de um reconhecimento fonético aplicado ao banco
de dados Oracle . 2000. 85f. Trabalho de Graduação – Universidade Regional de
Blumenal, Centro de Ciências Exatas e Naturais, Blumenal, 2000.

SCLIAR- CABRAL, Leonor. Princípios do sistema alfabético do
Português do Brasil. São Paulo: Contexto,2003.

schütz, ricardo. diferenças de Pronúncia entre Inglês e Português. English Made
in Brazil <http://www.sk.com.br/sk-pron.html>. Online. 21 de maio de 2011.

THORN VECTOR.String function . Disponível em:
<http://dev.mysql.com/doc/refman/5.1/en/string-functions.html#function_soundex >.
Acesso em: 21 maio. 2011.

65

UOL. Dígrafos e fonemas . Disponível em:
<http://educacao.uol.com.br/portugues/ult1693u49.jhtm>. Acesso em: 05 jun. 2011.

VIEIRA, Francisco de Castro. Língua Portuguesa no Mundo . 2010. 14f. Trabalho
de Graduação – Universidade de Trás-os-Montes e Alto Douro, Vila Real, 2010.

W3. Extensible Markup Language (XML) . Disponível em:
<http://www.w3.org/XML/> Acessado jul. 2011.

66

APÊNDICE A

PREPARAÇÃO DO AMBIENTE PARA REALIZAÇÃO DA BUSCA

FONÉTICA NO BANCO DE DADOS FIREBIRD

A preparação do ambiente para realização do teste da busca fonética em

banco de dados Firebird envolve os seguintes passos: instalação de uma ferramenta

gerenciadora de banco de dados e criação de um banco de dados com uma tabela

para inserção de palavras. Os próximos parágrafos demonstram a confecção desse

ambiente.

Foi utilizado o software IBExpert4 como ferramenta para acesso e

manipulação ao banco de dados.

4Ferramenta disponível para download através do site: http://ibexpert.net/ibe/.

67

APÊNDICE B

INSTALAÇÃO DO FIREBIRD

Esta instalação foi realizada em um computador cujo processador é um core 2

duo 2.20 GHz, 3GB de memória. Foi usado um sistema operacional Windows Seven

32 Bits. O início da instalação é mostrado na Figura 8.

Figura 10 – Tela inicial da instalação do Firebird para seleção do idioma

Fonte: Elaborada pelo autor.

 Após a seleção do idioma (Figura 8), será mostrada uma tela de

apresentação do Firebird. Essa tela não oferece opções de configuração para a

instalação ,e sua finalidade é de cunho informativo.

Após clicar no botão com a descrição “seguinte” na tela de apresentação, é

mostrada a tela onde está sendo informado o contrato de licença do Firebird. É

necessário estar de acordo com as condições impostas no contrato de licença para

continuar a instalação.

No passo seguinte, é necessário escolher o local de instalação do Firebird,

como mostrado na Figura 9 abaixo.

68

Figura 11 – Tela para configurar em que local deseja que a pasta do Firebird seja criada.
Fonte: Elaborad pelo autor.

Durante o processo de instalação tanto do Firebird versão 2.5 quanto de

versões anteriores, é possível configurar em que local será realizada a criação da

pasta do Firebird. Esse processo é importante, pois é possível realizar configurações

de arquivos e UDFs,s que estão localizadas na pasta de instalação. Como padrão o

Firebird realiza a criação da pasta em “C:\Program Files\Firebird\Firebird_2_5”.

Após a escolha do local de instalação do Firebird, é mostrado (Figura 10) um

processo importante na instalação, onde é decidido se o Firebird irá funcionar como

servidor ou como estação.

69

Figura 12 – Tela para configurar instalação como servidor ou como cliente
Fonte: Elaborada pelo autor.

No caso desta pesquisa, a opção adotada foi a instalação para servidor, pois

não serão utilizadas estações neste trabalho.

A partir do momento em que é decidido como o Firebird funcionará na

máquina, são disponibilizadas algumas informações adicionais, onde é possível que

o Firebird seja executado no painel de controle do sistema operacional, seja iniciado

sempre que o Windows inicie ou que crie as suas bibliotecas na pasta System de

sua máquina. Na instalação realizada, foram escolhidas todas as opções, conforme

apresentado na Figura 11.

70

Figura 13 – Tela para configurar recursos adicionais oferecidos pelo Firebird.

Fonte: Elaborado pelo autor.

Depois da escolha dessas configurações, a próxima encerra o processo de

instalação. Logo após a instalação, o serviço do SGBD Firebird já é iniciado e o

computador está pronto para acessar bases de dados Firebird.

71

APÊNDICE C

CÓDIGO FONTE ORIGINAL PUBLICADO NA REVISTA CLUBE DELPHI EM 2006

unit untMain;

interface

uses SysUtils;

function CodifonPT_BR(nome: PChar): PChar; cdecl; export;

implementation

function CodifonPT_BR(nome: PChar): PChar;

var

 i, p: integer;

 novo, aux: string;

begin

 try

 aux := AnsiUpperCase(nome);

 novo := '';

 //tira acentos e cedilha

 for i := 1 to Length(aux) do

 begin

 case aux[i] of

 'Á', 'Â', 'Ã', 'À', 'Ä': aux[i] := 'A';

 'É', 'Ê', 'È', 'Ë': aux[i] := 'E';

 'Í', 'Î', 'Ì', 'Ï': aux[i] := 'I';

 'Ó', 'Ô', 'Õ', 'Ò', 'Ö': aux[i] := 'O';

 'Ú', 'Û', 'Ù', 'Ü': aux[i] := 'U';

 'Ç': aux[i] := 'C';

 'Ñ': aux[i] := 'N';

 'Ý', 'Y': aux[i] := 'I';

 else

 if Ord(aux[i]) > 127 then

 aux[i] := #32;

 end;

 end;

 //retira E, DA, DAS, DE, DI, DO E DOS do nome

 p := Pos(' DA ', aux);

 while p > 0 do

72

 begin

 Delete(aux, P, 3);

 p := Pos(' DA ', aux);

 end;

 p := Pos(' DAS ', aux);

 while p > 0 do

 begin

 Delete(aux, P, 4);

 p := Pos(' DAS ', aux);

 end;

 p := Pos(' DE ', aux);

 while p > 0 do

 begin

 Delete(aux, P, 3);

 p := Pos(' DE ', aux);

 end;

 p := Pos(' DI ', aux);

 while p > 0 do

 begin

 Delete(aux, P, 3);

 p := Pos(' DI ', aux);

 end;

 p := Pos(' DO ', aux);

 while p > 0 do

 begin

 Delete(aux, P, 3);

 p := Pos(' DO ', aux);

 end;

 p := Pos(' DOS ', aux);

 while p > 0 do

 begin

 Delete(aux, P, 4);

73

 p := Pos(' DOS ', aux);

 end;

 p := Pos(' E ', aux);

 while p > 0 do

 begin

 Delete(aux, P, 2);

 p := Pos(' E ', aux);

 end;

 //RETIRA LETRAS DULICADAS

 for i := 1 to Length(aux) - 1 do

 if aux[i] = aux[i + 1] then

 delete(aux, i, 1);

 for i := 1 to Length(aux) do

 begin

 case aux[i] of

 'B','D','F','J','K','L','M','N','R','T','V','X':

 novo := novo + aux[i];

 'C':

 if aux[i + 1] = 'H' then

 novo := novo + 'X'

 else

 if aux[i + 1] in ['A', 'O', 'U'] then

 novo := novo + 'K'

 else

 if aux[i + 1] in ['E', 'I'] then

 novo := novo + 'S';

 'G':

 if aux[i + 1] = 'E' then

 novo := novo + 'J'

 else

 novo := novo + 'G';

 'P':

 if aux[i + 1] = 'H' then

 novo := novo + 'F'

 else

74

 novo := novo + 'P';

 'Q':

 if aux[i + 1] = 'U' then

 novo := novo + 'K'

 else

 novo := novo + 'Q';

 'S':

 case aux[i+1] of

 'H':

 novo := novo + 'X';

 'A','E','I','O','U':

 if aux[i - 1] in ['A','E','I','O','U'] then

 novo := novo + 'Z'

 else

 novo := novo + 'S';

 end;

 'W':

 novo := novo + 'V';

 'Z':

 if (i = Length(aux)) or (aux[i+1] = ' ') then

 novo := novo + 'S'

 else

 novo := novo + 'Z';

 end;

 end;

 novo := novo + ' ';

 CodiFonPT_BR := PChar(novo);

 except

 CodiFonPT_BR := PChar('erro');

 end;

end;

end.

75

APÊNDICE D

PROCEDIMENTO (PROCEDURE) CRIADO NO FIREBIRD PARA BUSCA

FONÉTICA

CREATE PROCEDURE CODIFONPT_BR (

 nome varchar(255))

returns (

 nome_fonetico varchar(255),

 parametro_2 varchar(1),

 parametro_3 varchar(1))

as

declare variable i integer;

declare variable k integer;

declare variable novo varchar(255);

declare variable v_com_acento varchar(50);

declare variable v_sem_acento varchar(50);

declare variable str1 varchar(1);

declare variable str2 varchar(1);

declare variable strant varchar(1);

begin

 NOME = upper(:NOME);

 NOVO = '';

 /*/ / TIRA ACENTOS E CEDILHA */

 V_COM_ACENTO = 'àâêôûãõáéíóúüÀÂÊÛÃÁÉÊÈËÍÎÌÏÝYÓÔÕÒÖÚÛÙÜÑ';

 V_SEM_ACENTO = 'aaeouaoaeiouuAAEUAAEEEEIIIIIIOOOOOUUUUN';

-- Substituir caracteres acentuados --------------------------------

 I = 1;

 NOVO = '';

 while (:I < (char_length(:NOME) + 1)) do

 begin

 if (V_COM_ACENTO containing substring(:NOME from :I for 1)) then

 begin

 K = 1;

 while (K < 50) do

 begin

76

 if (substring(:NOME from :I for 1) = substring(:V_COM_ACENTO
from :K for 1)) then

 NOVO = :NOVO || substring(:V_SEM_ACENTO from :K for 1);

 K = :K + 1;

 end

 end

 else

 NOVO = :NOVO || substring(:NOME from :I for 1);

 I = :I + 1;

 end

 NOME = :NOVO;

--

 select contemsouz.temsouz

 from contemsouz (:nome)

 into :parametro_2;

 select contemx.temsouz

 from contemx (:nome)

 into :parametro_3;

--/ / RETIRA E, DA, DAS, DE, DI, do E DOS do NOME

 select TROCA.SAIDA

 from TROCA(:NOME, ' DA ')

 into :NOME;

 select TROCA.SAIDA

 from TROCA(:NOME, ' DAS ')

 into :NOME;

 select TROCA.SAIDA

 from TROCA(:NOME, ' DE ')

 into :NOME;

 select TROCA.SAIDA

 from TROCA(:NOME, ' DI ')

 into :NOME;

77

 select TROCA.SAIDA

 from TROCA(:NOME, ' DO ')

 into :NOME;

 select TROCA.SAIDA

 from TROCA(:NOME, ' DOS ')

 into :NOME;

 select TROCA.SAIDA

 from TROCA(:NOME, ' E ')

 into :NOME;

-- Substituir caracteres repetidos ---------------------------------

 I = 1;

 NOVO = '';

 while (:I <= (char_length(:NOME))) do

 begin

 STR1 = substring(:NOME from :I for 1);-- JJOAO DA SILVAA

 STR2 = :STR1;

 if (:STR1 || :STR2 = substring(:NOME from :I for 2)) then

 begin

 NOVO = :NOVO || :STR1;

 I = :I + 2;

 end

 else

 begin

 NOVO = :NOVO || substring(:NOME from :I for 1);

 I = :I + 1;

 end

 end

 NOME = :NOVO;

 I = 1;

 NOVO = '';

 while (:I <= (char_length(:NOME))) do

78

 begin

 STR1 = substring(:NOME from :I for 1);

 if (:STR1 in ('B', 'D', 'F', 'J', 'K', 'M', 'R', 'T', 'W', 'L',
'*', '&', '$')) then

 NOVO = :NOVO || :STR1;

 else

 begin

 STR1 = substring(:NOME from :I for 1);

 if (:I < (char_length(:NOME))) then

 STR2 = substring(:NOME from :I + 1 for 1);

 else

 STR2 = null;

 if (:I > 1) then

 STRANT = substring(:NOME from :I - 1 for 1);

 else

 STRANT = null;

 if (:STR1 = 'N') then

 begin

 if ((:I = char_length(:NOME)) or (:STR2 = ' ')) then

 NOVO = :NOVO || 'M';

 else

 NOVO = :NOVO || 'N';

 end

 else if (:STR1 = 'X') then

 begin

 if ((:I = char_length(:NOME)) or (:STR2 = ' ')) then

 NOVO = :NOVO || 'KS';

 else

 NOVO = :NOVO || 'X';

 end

 else if (:STR1 = 'U') then

 begin

 if (:I = 1) then

79

 NOVO = :NOVO || 'W';

 else if (:STRANT in ('A', 'E', 'O', 'U')) then

 NOVO = :NOVO || 'L';

 end

 else if (:STR1 = 'C') then

 begin

 if ((:I = char_length(:NOME)) or (:STR2 = ' ')) then

 NOVO = :NOVO || 'K';

 else if (:STR2 = 'H') then

 NOVO = :NOVO || 'X';

 else if (:STR2 in ('A', 'O', 'U')) then

 NOVO = :NOVO || 'K';

 else if (:STRANT = 'X') then

 NOVO = :NOVO || 'S';

 else if (:STR2 in ('E', 'I')) then

 NOVO = :NOVO || 'S';

 else if (:STR2 in ('R', 'L')) then

 NOVO = :NOVO || 'K';

 end

 else if (:STR1 = 'Ç') then

 NOVO = :NOVO || 'S';

 else if (:STR1 = 'S') then

 begin

 if (:STR2 = 'H') then

 NOVO = :NOVO || 'X';

 else if (:STR2 = 'Ç') then

 NOVO = :NOVO || 'S';

 else if (:STRANT = 'C') then

 NOVO = NOVO || 'KS';

 else if ((:I = char_length(:NOME)) or (:STR2 = ' ')) then

 NOVO = :NOVO || 'S';

 else if (:STR2 = 'C') then

 NOVO = NOVO || 'S';

80

 else

 NOVO = NOVO || 'S';

 end

 else if (:STR1 = 'G') then

 begin

 if (:STR2 = 'E') then

 NOVO = NOVO || 'J';

 else if (:STR2 = 'I') then

 NOVO = NOVO || 'J';

 else

 NOVO = NOVO || 'G';

 end

 else if (:STR1 = 'P') then

 begin

 if (:STR2 = 'H') then

 NOVO = NOVO || 'F';

 else

 NOVO = NOVO || 'P';

 end

 else if (:STR1 = 'Q') then

 begin

 if (:STR2 = 'U') then

 NOVO = NOVO || 'K';

 else

 NOVO = NOVO || 'Q';

 end

 else if (:STR1 = 'Z') then -- IZADORA IZABELA 'LUIZ SOUZA
E FILHO'

 begin

 if ((:STR1 = 'Z') and (I = 1)) then

 NOVO = :NOVO || 'Z';

 else if ((I = char_length(:NOME)) or (:STR2 = ' ')) then

 NOVO = :NOVO || 'S';

81

 else

 NOVO = :NOVO || 'Z';

 end

 else if (:STR1 = 'V') then

 NOVO = :NOVO || 'W';

 end

 I = :I + 1;

 end

 NOVO = :NOVO || ' ';

 NOME_FONETICO = Trim(:NOVO);

 suspend;

end

82

APÊNDICE E

PROCEDIMENTO (PROCEDURE) CRIADO NO FIREBIRD PARA RETIRAR AS

PALAVRAS (E, DA, DAS, DE, DI, DO e DOS)

CREATE PROCEDURE TROCA (

 nome varchar(255),

 texto varchar(5))

returns (

 saida varchar(255))

as

declare variable aux varchar(255);

declare variable j integer;

declare variable tamstring integer;

begin

 J = 1;

 AUX = '';

 while (J <= (char_length(:NOME))) do

 begin

 TAMSTRING = char_length(:TEXTO);

 if (:TEXTO = substring(:NOME from :J for :TAMSTRING)) then

 begin

 J = :J + :TAMSTRING;

 AUX = :AUX || ' ';

 end

 else

 begin

 AUX = :AUX || substring(:NOME from J for 1);

 J = :J + 1;

 end

 end

 SAIDA = :AUX;

 suspend;

end

83

APÊNDICE F

PROCEDIMENTO (PROCEDURE) CRIADO NO FIREBIRD PARA ATRIBUIR

NÚMEROS A PALAVRAS QUE CONTÉM S OU Z

CREATE PROCEDURE CONTEMSOUZ (

 nome varchar(255))

returns (

 temsouz varchar(1))

as

declare variable strant varchar(1);

declare variable aux varchar(1);

declare variable j integer;

declare variable str2 varchar(1);

declare variable tamstring varchar(255);

begin

 J = 2;

 temsouz = '0';

 nome = upper(:nome);

 TamString = (char_length(:NOME) -1);

 while (J <= TamString) do

 begin

 strant = substring (:NOME FROM :J-1 FOR 1);

 STR2 = substring(:NOME from :J + 1 for 1);

 AUX = substring (:NOME FROM :J FOR 1);

 if (:AUX = 'Z') then

 begin

 temsouz = '1';

 break;

 end

 else if (((strant <> 'S') and (:aux = 'S') and (:str2 <> 'S'))

and ((:aux = 'S') and (:str2 <> 'Ç')) and ((:aux = 'S') and (:str2

<> 'C'))) then

 begin

 temsouz = '1';

 break ;

 end

84

 J = :J + 1;

 end

 suspend;

end

85

APÊNDICE G

CÓDIGO FONTE DE CONSULTA DO SISTEMA QUE REALIZA A BUSCA

FONÉTICA

procedure TFConsultaCliente.BitBtn1Click(Sender: TObject);

var Palavra: string;

 RegraSouZ: string;

 FiltroAuxiliar: string;

 CodFonetico1, CodFonetico2: string;

 function PalavraRegraEspecial(P: string): Boolean;

 var I: integer;

 begin

 Result := false;

 for I := 2 to length(Palavra) - 1 do

 begin

 if (Palavra[I] = 'Z') then

 Result := true

 else if (Palavra[I] = 'S') then

 Result := true

 else if (Palavra[I] = 'X') then

 Result := true;

 if (Result) then

 break;

 end;

 end;

begin

 Palavra := Trim(UpperCase(Edit1.Text));

 if (PalavraRegraEspecial(Palavra)) then

 begin

 BuscaFoneticaEspecial;

 end

 else

 begin

 IBQuery1.Close;

 with IBQuery1.SQL do

86

 begin

 Clear;

 Add('select CLIENTE.NOME_CLIENTE, CLIENTE.CAMPO_FONETICO,
CLIENTE.TEM_S_OU_Z, CLIENTE.TEM_X');

 Add('from CLIENTE');

 Add('where CLIENTE.CAMPO_FONETICO like ''' +

 ''' || (select CODIFONPT_BR.NOME_FONETICO');

 Add(' from CODIFONPT_BR(' +

 QuotedStr(AnsiUpperCase(Edit1.Text))

 + ')) || ' + QuotedStr(''));

 Add('order by CLIENTE.NOME_CLIENTE');

 end;

 end;

 try

 IBQuery1.Open;

 except

 on E: Exception do

 ShowMessage(E.Message);

 end;

end;

